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ABSTRACT

The human microbiome is increasingly recognized for its crucial role in the development and
progression of neurodegenerative diseases. While the gut-brain axis has been extensively studied,
the contribution of the oral microbiome and gut-oral tropism in neurodegeneration has been largely
overlooked. Cognitive impairment (Cl) is common in neurodegenerative diseases and develops on
a spectrum. In Parkinson'’s Disease (PD) patients, Cl is one of the most common non-motor symptoms
but its mechanistic development across the spectrum remains unclear, complicating early diagnosis
of at-risk individuals. Here, we generated 228 shotgun metagenomics samples of the gut and oral
microbiomes across PD patients with mild cognitive impairment (PD-MCI) or dementia (PDD), and
a healthy cohort, to study the role of gut and oral microbiomes on Cl in PD. In addition to revealing
compositional and functional signatures, the role of pathobionts, and dysregulated metabolic path-
ways of the oral and gut microbiome in PD-MCI and PDD, we also revealed the importance of oral-
gut translocation in increasing abundance of virulence factors in PD and Cl. The oral-gut virulence
was further integrated with saliva metaproteomics and demonstrated their potential role in dysfunc-
tion of host immunity and brain endothelial cells. Our findings highlight the significance of the oral-
gut-brain axis and underscore its potential for discovering novel biomarkers for PD and Cl.
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Introduction . .
one of its most common non-motor dysfunctions

Neurological disorders are the leading cause of
physical and cognitive disability around the
world, currently affecting approximately 15% of
the worldwide population and expected to increase
in future decades due to an aging population,
industrialization and changes in environmental
impac‘[s.l_3 Parkinson’s Disease (PD) is a complex
neurodegenerative disease with the fastest growing
prevalence worldwide.>* While it is primarily char-
acterized by motor symptoms such as involuntary
shaking, slow movements, and muscle stiffness,

is cognitive impairment (CI). There is a high risk of
dementia in patients with PD with nearly half of
patients reaching the dementia stage within 10
years after diagnosis and virtually all patients
develop full dementia within 20years after
diagnosis.” CI develops on a spectrum that ranges
from mild cognitive impairment (MCI) to full-
scale dementia.*®” Identification of the risk of
developing CI and cognitive decline are important
for clinical management of NDs.” However, the
evaluation of cognition remains challenging and
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there is currently an unmet need on whether
patients with neurodegenerative diseases have CI
or are at risk for further cognitive decline. Non-
genetic factors, such as microbiome and environ-
mental impacts, including diet, pollution, and
drugs exposure, may have a significant role in
this.>’

A growing body of evidence links the gastroin-
testinal (GI) tract with neurodegenerative diseases,
including PD, and GI dysfunction is common in
patients with PD.'®'" As such, several studies have
investigated the role of the gut microbiome in PD
for novel diagnostic and treatment avenues as well
as a better understanding of the gut-brain axis."
Several studies consistently indicated an increased
abundance in Akkermansia, Bfidobacterium and
Lactobacillus, and a depletion in butyrate produ-
cers such as Roseburia, Faecalibacterium and
Blautia in PD patients.” One of the key mediating
factors of the gut microbiome composition is
microbial metabolites and virulence that can have
an impact on PD and CI onset and progression.
This could be through induction of neuroinflam-
mation and oxidative stress that exacerbate
neurodegeneration.'>'* Among microbial metabo-
lites, short chain fatty acids (SCFAs) production
and especially butyrate has shown to have neuro-
protective effects.'” At the same time, the secretion
of bacterial endotoxins and cell components have
been increasingly linked to the pathogenesis of
NDs and, in particular PD.'®'” The presence of
the lipopolysaccharides (LPS), a major component
of gram-negative bacteria and indication of the
gut-brain axis dysfunction, in blood can activate
microglia and eventually leads to chronic neuroin-
flammation. LPS can also promote a-synuclein
aggregation, a hallmark of PD and its progression,
which could also lead to further neurodegeneration
and CL'® Release of gram-positive bacterial com-
ponents such as peptidoglycan and lipoteichoic
acid, could stimulate immune responses and pro-
mote the secretion of proinflammatory cytokines
and contribute to the neuroinflammation.'*°

Similarly, oral health of PD patients has also
been shown to impact the course of disease.”’ a-
synuclein, the molecule that forms aggregates in
neurons in PD, can be detected in saliva. The pre-
sence of a-synuclein in the oral cavity frequently
results in reduced saliva production and difficulty

swallowing,”>** and report the association of NDs

with dysphagia. Oral bacteria contribute to chronic
inflammation and neurodegeneration through var-
ious mechanisms. Opportunistic pathogens in the
oral cavity, which proliferate due to dysbiosis
within the oral ecosystem, can form biofilms
leading to bacterial overgrowth.?**® These
biofilms, often associated with gingivitis and
periodontitis,”” enable bacteria to enter the blood-
stream, potentially causing bacteremia and sys-
temic inflammation.”® Porphyromonas gingivalis is
a well-studied oral pathogen and has been observed
in Alzheimer’s disease (AD) brains and active per-
iodontitis have been reported to impact CI,>""*'
and in bacteremia cases it can induce blood-brain
permeability.”* The presence of inflammation, bac-
teremia, and dysfunction of the mucosal barriers
can lead to spontaneous dissemination of bacteria
across tissues.” Simultaneously, the use of specific
drugs, such as proton pump inhibitors and anti-
biotics, to treat stomach reflux, gastritis, and ulcers,
that are common conditions in PD patients,**
modulate and accelerate microbial
translocation.”>*® The presence of oral pathobionts
and their overgrowth, exacerbates gut dysbiosis
and systematic inflammation, as has been reported
in several other diseases.’”®

In this study we used metagenomics of feces and
saliva in a cohort of PD patients that has no CI, has
MCI (PD-MCI) or full dementia (PDD), together
with a healthy control cohort. We hypothesize that
compositional and functional differences in the
microbiomes exist along the CI spectrum and that
these differences, in turn, impact PD progression.
We use a combination of machine learning
approaches together with functional, correlative
and network analyses to associate microbiome
changes with CI. Through this, we aim to establish
an oral-gut-brain axis in PD to bring forth a more
mechanistic understanding of the human micro-
biome in ND.

Results

Gut and oral microbiome composition is associated
with cognitive decline in Parkinson’s disease

We performed shotgun metagenomics on 228 sal-
iva and fecal samples taken from 41 Parkinson’s



Disease (PD) patients with mild cognitive impair-
ment (PD-MCI), 47 patients with full dementia
(PDD) and 26 healthy controls (HC) (Figure 1(a),

Supplementary Table S1).

Additionally,

we

sequenced 20 fecal samples from PD patients
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CI. The age and gender distribution

between the PD-MCI and PDD groups were simi-
lar (Table 1, Figure 1(b)), with a mean age of 67.27
years (SD = 8.75 years) and 70.89 years (SD =7.34)
for PD-MCI and PDD, respectively, and 34.15%
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Figure 1. Gut and oral microbiome dysbiosis in PD patients with different degrees of cognitive impairment. (a) Study and
methodology overview. A total of 114 individuals were included in the study. This included 41 PD patients with mild cognitive
impairment (PD-MClI), 47 patients with full dementia (PDD) as well as 26 healthy controls (HC). Saliva and fecal samples were collected
from all individuals and used for DNA extraction to perform shotgun metagenomics (Methods). We first performed intra-tissue analysis
by investigating compositional and functional microbial changes in gut and oral separately. Thereafter, we combined gut and oral
data to perform predictive modeling using machine learning. Finally, we investigated whether the translocation of oral species to the
gut potentially impact disease. (b) Demographic features of study population. Distribution of age and gender for HC, PD-MCl and PDD
patients. (c) Key cognitive features of study population. Distribution of scores for the mini mental state examination (MMSE) and CDRS
scores. (d) Key motor parameters of study population. Distribution of UPDRS, HYE and disease duration (months). (e) Shannon diversity
and MGS richness of the gut microbiome. Significance was calculated with a Wilcoxon rank-sum test with an asterisk (*) indicating
p-value <0.05. (f) Shannon diversity and MGS richness of the oral microbiome. Significance was calculated with a Wilcoxon rank-sum
test with an asterisk (*) indicating p-value <0.05. (g) Relative abundance changes of genera in the gut microbiome. MGS were mapped
to their corresponding genus and differentially abundant genera were calculated using Wilcoxon rank-sum test with a p-value cutoff
of 0.05. Significantly changing genera were visualized using normalized mean abundance by calculating Z-scores for each genus.
Arrows indicate either a significant depletion (blue) or increase (red) of the abundance of a genus. (h) Metabolic pathway enrichment
of different patient populations. The gene counts of all samples were used to map against the KEGG database to calculate genes
counts for metabolic genes that were then used for enrichment analysis by first calculating differentially abundant genes using
Wilcoxon rank-sum tests. Enrichment of KEGG modules were then performed using hypergeometric enrichment with a p-value cutoff
of 0.05. (i) Relative abundance changes of genera in the oral microbiome. MGS were mapped to their corresponding species and
differentially abundant species were calculated using Wilcoxon rank-sum test with a p-value cutoff of 0.05. Significantly changing
species were visualized using normalized mean abundance by calculating Z-scores for each species. Arrows indicate either
a significant depletion (blue) or increase (red) of the abundance of a species.
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and 40.43% of females for PD-MCI and PDD,
respectively. Cognitive assessment using the
Mini-Mental State Examination (MMSE) and
Clinical Dementia Rating Scale (CDRS) revealed
a significant difference between PD-MCI and
PDD patients (Table 1, Figure 1(c)). Additionally,
motor function parameters, including the Unified
Parkinson’s Disease Rating Scale (UPDRS), Hoehn
and Yahr Scale (HYE), and disease duration, also
showed significant differences between the two
groups (Table 1, Figure 1(d)). Overall, these find-
ings indicate that patients with MCI exhibit distinct
cognitive and motor characteristics compared to
those with full dementia.

To study the in-depth compositional and func-
tional changes of the gut and oral microbiomes on
cognitive impairment and progression in PD, we
performed deep sequencing with an average of 31.9
reads and 28.2 million reads per sample, respec-
tively, and quantified microbial genes and metage-
nomic species (MGSs) (Figure 1(a)). Stool and
saliva samples were mapped to respective gene
catalogs®™*’ to satisfactory standard with and aver-
age mapping rate of 67.50% and 39.32%, respec-
tively, which allowed us to confidently proceed
with downstream analysis to identify MGSs
(Figure S1A, Supplementary Table S2,
Supplementary Table S3, Supplementary Table
§4). Our analysis revealed a significant decrease in
gut microbiome diversity in PDD patients com-
pared to those with PD-MCI (Figure 1(e)) and
a decrease in both diversity and MGS richness in
the oral microbiome of PDD patients (Figure 1(f),
Method). Taxonomic profiling at the phylum level

in gut and oral microbiome showed Actinobacteria
was increased in the gut of PD-MCI and PDD
patients while Bacteroidetes was decreased (Figure
S1B, Figure S1C, Supplementary Table S5). In the
oral cavity we found a decrease in Actinobacteria,
Bacteroidetes, Firmicutes, Proteobacteria and
Spirochaetes, specifically in PDD patients. These
findings suggest that global alterations in both gut
and oral microbiomes are present and may be
linked to cognitive decline in PD.

To further investigate how the composition of
the microbiome changes at varying levels of cogni-
tive impairment, we performed differential abun-
dance testing of MGSs together with functional
enrichment analysis. In the gut microbiome, we
identified three clusters of signatures characterized
by distinctly different genera (Figure 1g). The first
genera cluster showed the enrichment of species
for Bifidobacterium longum, Bilophila wads-
worthia, Ruthenibacterium lactatiformans in PD-
MCI patients (Figure S1D). Notably, consistent
with a previous report, Desulfovibrio genus also
increases with PD severi‘[y.41 These species were
functionally enriched for energy generating
metabolic pathways such as citrate cycle, as well
inositol-phosphate metabolism but depleted
for glutathione biosynthesis (Figure 1(h)).
The second cluster represents a significant enrich-
ment in PDD patients with opportunistic pathogen
species from genera such as Olsenella sp. Marseille-
P2912 and Hungatella (Figure S1D) and with func-
tional enrichment like those of PD-MCI but addi-
tionally enriched for several amino acid transport
systems (Figure 1(h)). The third cluster represents

Table 1. Demographic and clinical features of the study cohort.

HC PD PD-MCI PDD
Demographic features
Age* (years, mean = std) 59.62 +8.30 62.40 +10.03 67.279+8.75 70.89+7.34
Gender (Female) 15 (57.69%) 6 (30.00%) 14 (34.15%) 19 (40.43%)
Education (years mean = std) 59.62 + 8.30 - 67.27 +8.75 70.89 +7.34
Cognitive features
MMSEt (mean = std) 28.00 + 1.85 2835+ 1.53 23.34+3.42 19.66 + 3.58
CDR (mean =+ std) 0.00 £ 0.00 - 0.50 +£0.00 1.15+0.36
Motor features
UPDRS# (mean =+ std) - 39.75+19.02 3559+ 16.16 47.70 £ 17.60
HYES§ (mean + std) - 2.25+0.98 1.97 £0.90 2.54+0.86
PD duration| (months, mean = std) - 63.60 + 80.77 69.88 +49.67 105.20 + 56.85

*.PDD vs. HC, PDD vs. PD, PD-MCl vs. HC.

1.PDD vs. PD-MCI, PDD vs. HC, PDD vs. PD, PD-MClI vs. HC, PD-MCl vs. PD.

$.PDD vs. PD-MCI.
§.PDD vs. PD-MCI.
|.PDD vs. PD-MCI, PDD vs. PD.

9.Note: Pairwise Kruskal-Wallis tests was performed for all demographic and clinical features with significance comparisons indicated below.



a distinct depletion signature characteristic in PDD
patients that predominantly consists of commensal
and Dbeneficial microbes. Several butyrate-
producing microbes such as Roseburia faecis,
Faecalibacterium prausnitzii together with several
Ruminococcus species were all depleted in PDD
compared to PD-MCI (Figure 1(g), Figure S1D).
In addition, compared to HC patients, PDD
patients also show enrichment of B. longum,
B. adolescentis, R. lactatiformans (Figure S1E). We
then reconstructed a correlation network using the
gut microbiome genera of these three clusters
which showed that cluster 1 and cluster 2 have an
overall negative correlation with cluster 3 further
supporting that the depletion signature in PDD
identified in cluster 3 (Figure S1F). As expected,
genera in cluster 2 had a stronger negative correla-
tion with cluster 3 compared to cluster 1 and cluster
3, however, we interestingly also observed a strong
negative correlation between Bifidobacterium in
cluster 1 and other genera in cluster 3 suggesting
that Bifidobacterium is a strong driver in gut micro-
biome community structures and that its increase
leads to depletion of other species.

To identify whether observed species changes
are a result of CI, we compared differentially abun-
dant species in PD-MCI and PDD in the gut with
differentially abundant species in PD patients with-
out CI, termed PD (Figure S1H, Supplementary
Table S5). Patients classified as PD had signifi-
cantly different MMSE scores compared to PD-
MCI and PDD patients but did not differ signifi-
cantly from healthy controls (HC), suggesting that
they likely did not have CI (Table 1). When com-
paring all three PD groups with HC, we identified
a limited number of overlapping species.
Specifically, eight enriched and three depleted spe-
cies in PD overlapped with either PD-MCI or PDD
(Figure S1H, Figure S1I). Notably, many species
were uniquely enriched or depleted in PD-MCI or
PDD, suggesting that these microbial changes are
likely associated with CI

Diagnosing CI in PD remains challenging due to
its subjective nature the difficulty in distinguishing
CI features from motor symptoms, such as those
assessed by the UPDRS, and disease duration. To
address this, we stratified patients into tertiles based
on UPDRS scores and disease duration, respectively,
and identified differentially abundant species
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associated with these factors. We found that a total
of 40 species differentially enriched or depleted
because of UPDRS, while 65 species were associated
with disease duration (Figure S1J). Interestingly, 43
species were uniquely enriched or depleted because
of CI (Figure S1K). This group included key buty-
rate-producing species such as Faecalibacterium
prausnitzii, Bifidobacterium dentium, B. bifidum
and Roseburia sp. To further assess the relationship
between microbial changes and PD-related factors
we also constructed linear regression models to test
if any of the enriched or depleted species were cor-
related with UPDRS or disease duration. We identi-
fied 12 gut species significantly correlated with
either factor (Figure S2A, p-value <0.05). Among
them, Butyrate-producing Ruminococcus sp., which
was found to be depleted in PDD because of CI, was
associated with both UPDRS and disease duration.
Other species included, Hungatella hathewayi,
Klebsiella pneumoniae, Desulfovibrio fairfieldensis,
Bacteroides stercoris, Senegalimassilia anaerobia,
Parabacteroides merdae, Gemmiger formicilis,
Anaerotruncus  sp.,  Acidaminococcus  sp.,
Clostridium sp. In the oral microbiome,
Streptococcus pneumoniae, Megasphaera micronuci-
formis, Treponema denticola, Atopobium parvulum
were significantly associated with either of UPDRS
and disease durations. Since these species strongly
correlate with PD motor severity (UPDRS) and dis-
ease duration, their changes are likely driven by
overall PD progression rather than being specific to
cognitive impairment, as they are also influenced by
broader PD-related factors.

In the oral cavity, we observed an overall deple-
tion of several species in PD-MCI and PDD
patients compared to HC, which could show the
loss of diversity and commensalism in the oral
cavity and opportunity for pathogens to triumph
(Figure S1G). We did, however, find a significant
increase in abundance of Oribacterium asacchar-
olyticum in PD-MCI (Figure 1(I)). Other potential
pathogenic species such as Streptococcus pneumo-
niae and Prevotella pallens were also increased
in PD-MCI compared to HC, albeit not signifi-
cantly. Our functional enrichment showed that
hexose sugar transport, chemosensory two com-
ponent regulatory system and neocarzinostatin
antibiotic biosynthesis are enriched in PD-MCI
(Figure 1(h)).
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Enterotypes and salivatypes revealed distinct
functional features for Parkinson’s disease and
cognitive impairment

To understand the compositional changes of gut
and oral communities we performed principal
coordinate analysis (PCoA). Although there was
a statistically significant separation in the gut
(gut; PERMANOVA p-value=0.017, oral;
PERMANOVA p-value = 0.495), the clustering in
both cases were discernible (Figure S2B, Figure
§2C). Dirichlet multinomial mixture modeling
has previously been shown to bring about hidden
community structures in microbiome data that
otherwise cannot clearly be distinguished with
supervised clustering methods.*”> Using this
approach, we identified three clusters for gut
microbiome, termed enterotypes, enriched for dif-
ferent bacterial genera (ENT1,2 and 3; Figure 2(a)).
Our clinical study groups (PD-MCI and PDD)
enriched with different enterotypes
(Figure 2(b)), and we found significant clustering
of enterotypes using PCoA (Figure 2(c)). HC
patients were enriched for ENT2 with a distinct
signature of commensal Prevotella bacteria while
PD-MCI and PDD showed a decrease in ENT2
instead. ENT2 was depleted for cytochrome
C oxidase that potentially indicate deficient energy
metabolism in the gut of PD patients (Figure 2(c)).
PD-MCI patients were enriched for ENT1 that
showed a signature for Bacteroides and Alistipes.
PDD were enriched for Bacteroides of ENT1 and
ENT3. ENT3 in PDD was depleted for aminoacyl-
tRNA biosynthesis and ribosomal pathways sug-
gests overall less translation of proteins and
a reduction in citrate cycle pathways can poten-
tially also indicate reduced production of SCFAs.
In contrast, branch-chain amino acid (BCAA) pro-
duction such as isoleucine was enriched which has
been shown to be linked to different diseases
including PD.*"*¢

We then identified three clusters, termed saliva-
types, in the oral cavity (SAL1, 2 and 3;
Figure 2(e)). This result pointed out the PD-MCI
and PDD groups were enriched to different saliva-
types (Figure 2(f)), and salivatypes clustered signif-
icantly using PCoA (Figure 2(g)). SALI1, enriched
in PDD patients, was increased in pathobionts such
as Streptococcus, Rothia and Veillonella and showed

were

an enrichment for proline biosynthesis. PDD
patients also showed a depletion in SAL2 that
were dominated by Neisseria. Interestingly, SAL2
were enriched for multidrug resistance and its
depletion in PDD potentially indicate a dysfunc-
tional microbial community.

Gut and oral biomarkers accurately predict clinical
phenotypes

The observation that patients can be stratified by
their gut and oral microbiomes could reflect the
potential to use the microbiome for prediction of
clinical outcomes and further be extended to iden-
tify novel prognostic biomarkers. We therefore
used the abundances of gut and oral microbial
species together with clinical metadata as features
for predicting clinical outcomes (PD-MCI and
PDD) using two machine learning (ML) algorithms
and then used SHapley Additive exPlanations
(SHAP) scoring to interpret model predictions
and explain the contribution of features, or species,
toward model predictions.

In four different predictions, we used gut
(SIM1), oral (SIM2), both (SIM3; gut and oral)
and both together with age, gender, and education
(SIM4) of these patients, as features for ML predic-
tion. Using AUCROC and accuracy we showed
that SIM4 performed the best compared to other
models with an average AUCROC of 69.42% and
average accuracy score of 66.91% (Supplementary
Table S6 , Methods). It was particularly interesting
to see that the inclusion of clinical metadata (age,
gender, and education) improved the AUCROC
score. We therefore focussed further analysis and
feature selection on outcomes of SIM4 that
included gut and oral species abundances together
with clinical metadata.

We first showed accurate prediction of PD-MCI
compared to HC (AUCROC: SVC=0.84, RF =
0.89; Accuracy: SVC = 0.88, RF = 0.77; Figure 3(a),
Methods) as well as PDD compared to HC
(AUCROC: SVC=0.82, RF=0.86; Accuracy:
SVC=0.73, RF=0.78; Figure 3(b)). Of particular
interest was to assess whether the microbiome can
be used to distinguish different levels of cognitive
decline by comparing PD-MCI and PDD patients.
It was therefore supportive to also accurately pre-
dict PDD compared to PD-MCI (AUCROC: SVC
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Figure 2. Enterotypes and salivatypes have distinct functional features. (a) Heatmap showing the genus abundance for three
enterotypes (ET). Using dirichlet multinomial clustering we identified an optimal number of three clusters that differentiate the gut
microbiome composition termed enterotype 1-3 (ENT1-3). Each cell in the heatmap depicts the relative abundance of a particular
genus to each sample. (b) Fraction of samples classified as ENT1-3 for HC, PD-MCl and PDD, respectively. (c) PCoA of gut samples. The
Bray-Curtis distance between all samples were calculated using species abundances and then used to perform PCoA. Each sample in
the PCoA plot was colored according to its assigned enterotype.(d) functional enrichment of KEGG modules for ENT1-3. (e) Heatmap
showing the genus abundance for three salivatypes (SAL). Using dirichlet multinomial clustering we identified an optimal number of
three clusters that differentiate the oral microbiome composition termed salivatype 1-3 (SAL1-3). Each cell in the heatmap depicts the
relative abundance of a particular genus to each sample. (f) Fraction of samples that were classified as SAL1-3 for HC, PD-MCI and
PDD, respectively.(g) PCoA of oral samples. The Bray-Curtis distance between all samples were calculated using species abundances
and then used to perform PCoA. Each sample in the PCoA plot was colored according to its assigned salivatype. (h) Functional
enrichment of KEGG modules for SAL1-3.

=0.59, RF=0.57; Accuracy: SVC=0.45, RE=0.5;
Figure 3(c)). Furthermore, in predicting PDD ver-
sus PD-MCI the inclusion of clinical metadata in
SIM4 improved the AUCROC and accuracy of the
model compared to SIM3 where only gut and oral

metagenomics was used (AUCROC: SIM3 =0.41,
SIM4 =0.58; Accuracy: SIM3=0.395, SIM4=
0.475; Supplementary Table S6). This indicates
that microbial species changes are sensitive enough
to differentiate between PD with varying clinical
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Figure 3. Machine learning models using gut and oral microbial species accurately predicts PD clinical phenotypes. a-c) random forest
(RF) and support vector classification (SVC) models for prediction of clinical state. Using the species abundances of gut and oral
metagenomes as features, two machine learning models were built to predict PD-MCI versus HC (a), PDD versus HC (b) and PDD versus
MCI (c). The ROC curves show good AUC for all models. d-e) top features contributing to RF prediction in three different models. Using
SHAP calculations we calculated the contribution of features (gut and oral microbial species, d and e, respectively) to the prediction of
each model. The asterisks indicate whether these species were found to be significantly dysregulated using differential abundance
analysis (table S5). (f) association of features to clinical metadata. Model features (species abundances) was correlated with clinical
metadata using spearman rank correlation. The significant associations (p-value <0.01) are indicated with asterisks (*) and the color is
indicative of the correlation coefficient.

features, and the inclusion of additional features
like age and gender can significantly improve
model predictions.

We then applied SHAP interpretation on the ML
outputs to determine the contribution of species to
model predictions (Methods). Several species that
were significantly dysregulated (Supplementary

Table S5) were also identified as important features
for predicting PD-MCI and PDD. The decrease
in beneficial bacteria such as Faecalibacterium
prausnitzii, Roseburia faecis, Roseburia inulinivor-
ans, Eubacterium rectale in the gut together with
a decrease of Treponema denticola, Porphyromonas
endodontalis and Actinomyces in the oral cavity



were the most important features in predicting
PDD (Figures 3(d,e)) Bacteroides uniformis impor-
tant for PDD prediction, have been shown to be
associated with PD by increasing DAT (dopamine
transporter) binding of dopamine and its decrease
associated here with PDD might indicate poor
dopamine metabolism that cause cognitive
decline.*” It was also interesting to see that the
increase in Akkermansia muciniphila that has pre-
viously been associated with PD*'? was an impor-
tant feature for PDD prediction. The fact that the
abundance of A. muciniphila did not significantly
change in PDD using differential abundance ana-
lysis but with predictive modeling shows the value
of using ML together with differential abundance.
Another interesting observation was that species
belonging to the Bfidiobacterium genus, also pre-
viously shown to be important in PD pathogenesis,
were important features for predicting PD-MCI
and PDD. However, B. longum and B. bifidum
were associated with PD-MCI prediction while
B. adolescentis was associated with PDD.

We finally associated top predictor species with
clinical metadata and found several correlations
(Figure 3(f)). For example, the abundance of
E. rectale, F. prausnitzii and R. faecis showed
a significant association with MMSE (Figure
S3A). Other cognitive parameters also showed an
overall positive correlation with these species. For
example, Fusicatenibacter saccharivorans showed
a positive correlation with categorical fluency tests
of patients (Figure S3B). Motor parameters such as
UPDRS, in addition, had correlation with oral
pathogen Tannerella forsythia (Figure S3C).

Oral microbiome in the gut is enriched for virulence
factors that contributes to PD pathophysiology and
cognitive decline

The translocation of oral-specific microbial species
or features to the gut lumen, a phenomenon
termed oralization of the gut, has previously been
associated with different diseases.***’ As men-
tioned in the introduction, the migration of bac-
teria, and even fragments of their genomes to other
body sites and tissues,” can increase the release of
bacterial metabolites and cellular components
causing systematic inflammation.”" To explore
whether gut oralization is associated with cognitive
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impairment (CI), we mapped gut metagenomes
against a non-redundant oral microbial gene cata-
log to identify oral-specific genes in the gut
(Methods).

After retrieving the gene counts from the cross-
mapping gut samples, initially we performed gene
richness analysis and observed PDD patients have
significant enriched oral microbial genes in the gut
(Figure 4(a)). To determine whether these genes
potentially play a role in pathogenesis, we charac-
terized potential virulence factors (VFs) and
showed that PD-MCI and PDD patients have
enriched oral-specific VFs in the gut compared to
HC (Figure 4(b)). When calculating enriched or
depleted VFs we found an overall enrichment of
VFs in PD-MCI and PDD compared to HC and
that 187 of enriched VFs overlap in PD-MCI and
PDD (Figure 4(c), Supplementary Table S7).

To further understand how specific species con-
tribute to enrichment of VFs we first identified
which MGSs in both the gut and the oral contain
these VFs within their pan-genomes (Figure S4). In
both the gut and the oral, Escherichia coli contained
the most VFs. In the oral cavity, other pathobionts
such as Klebsiella pneumonia, Cronobacter sakaza-
kii and Streptococcus salivarius also showed several
VFs as part of their genomes. Similarly, in the gut,
several Klebsiella and Enterobacter species were
found enriched for VFs.

To elucidate underlying community structures,
we constructed an integrative correlation network
between gut species, oral species, and oral VFs in
the gut (Figure 4(d)). Using network analysis, we
identified two clusters of co-occurring species in
the gut. The first consisted of enriched species that
all had a positive correlation with VFs while
the second consisted of depleted species that all
had a negative correlation with VFs. This was an
interesting observation because enriched species
were primarily pathobionts such as E. coli,
Egerthella sp. and Enterobacter xiangfangensis
which were most connected, while depleted species
were all species associated with a healthier gut such
as Feacalibacerium spps and Roseburia intestinalis
(Figure 5(a)). Overall, this suggested that the
enrichment of pathogenic species in PD, which
are associated with increased VFs, potentially
cause a depletion of commensal bacteria, reduces
species diversity, and gut barrier dysfunction. We
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Figure 4. The sharing of gut and oral species is associated with increased virulence that contributes to disease progression. (a)
Richness of oral-specific microbial genes in the gut. All gut samples were mapped against the gene catalog of oral microbial genes.
The richness of genes was then calculated for different study groups. (b) Richness of oral-specific virulence factors (VFs) in the gut. VFs
were identified using sequence alignment of the oral genes against the PATRIC database (methods). The richness of VFs was then
calculated for different study groups. (c) Venn diagram of enriched VFs in PD-MCl and PDD patients. Differentially abundant VFs were
calculated for PD-MCI and PDD patients against HC, respectively, using Wilcoxon rank-sum tests (p-value 0.05). (d) Network analysis of
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also found that K. pneumonia was positively corre-
lated in both the gut and oral with VFs and that
Streptococcus sobrinus, Lactobacillus fermentum
and L. crispatus were enriched in oral and posi-
tively correlated with VFs. The significant positive
correlations between the oral and gut enriched
species with virulence in the PDD and PD-MCI.
Enriched VFs had different functions related to
stress, immune modulation, adherence, biofilm
formation, invasion, and metabolism (Figure 4(d),
Supplementary Table S8). The most connected
VFs, agaC, yraC, yraD, fimG, fimD, narG, narC,

gatZ and ompA, were all involved in biofilm for-
mation, adherence, and invasion. Outer membrane
protein A (ompA) contributes to brain microvas-
cular endothelial cells (BMECs) invasion via
aligand-receptor interaction. Further investigation
revealed that ibeB, ibeC and Imb are also involved
in brain microvascular endothelial cell invasion. It
was also interesting to find that several VFs related
to immune modulation are involved in LPS synth-
esis, for example gmhA (Figure 5(b)).

We then used saliva proteomics previously
generated for the same cohort of patients®® to
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identify whether any of the discovered oral VFs in
gut metagenomes were enriched in the oral cavity
that could potentially suggest that these VFs have
translocated to the gut and serve as a validation
(Figure 4(d)). We were able to validate eight VFs
using this approach. D-sedoheptulose 7-phosphate
isomerase (gmhA), is a major immunogen involved
in LPS biosynthesis and UDP-glucose 6-dehydro-
genase (udg) also involved in immune modulation
assist in the evasion of the host immune system by
protecting bacteria from opsonophagocytosis and
serum Kkilling (Supplementary Table S8). Other vali-
dated VFs were involved in metabolism and two
genes, outer membrane receptor for ferric entero-
bactin and colicins B, D (fepA) and ATP-binding
protein (fbpC), were responsible for iron uptake by
bacterial cells. Lastly, carbamoyl-phosphate synthase
large chain (carB) mediates bacterial resistance to
reactive oxygen species (ROS) and is important for
phagosomal escape.

Discussion

Human gut and oral microbiomes have each
been implicated to play a role in the pathology
of PD and other neurodegenerative diseases.”
Our study reveals a significant connection
between the oral and gut microbiomes in PD
patients, emphasizing the functional role of this
oral-gut microbiome continuum in CI. Most
notably, our functional analysis shows that infil-
tration of oral microbiome in the gut are
responsible for increased virulence factors in
the gut lumen of PD patients.

Microbial alterations in PD are modulated by
cognitive impairment

The increased abundance of microbial species from
the Bifidobacterium, Lactobacillus and Akkermansia
genera in the gut have consistently been associated
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with PD,>'"1#2>% while butyrate-producing taxa
such as, Roseburia, Faecalibacterium and Blautia
are consistently depleted in PD patients. Our find-
ings provide the evidence that CI in PD further
influences gut microbial composition when consid-
ering different stages of cognitive decline.

We found that B. longum is enriched in PD-MCI
and PDD while B. adolescentis are only signifi-
cantly enriched in PDD, suggesting that it is impor-
tant to consider species specific changes with
relation to CI. Bifidobacterium adolescentis can
therefore be a potential marker for cognitive
decline in PD. Similarly, L. mucosae was enriched
in PD-MCI and PDD while L. salivarius and
L. gasseri were only enriched in PDD and
L. johnsonii was only enriched in MCI. Although
not as frequently reported, Ruthenibacterium lac-
tatiformans, enriched in PD-MCI and PDD, were
also previously shown associated with PD.""

In congruence with previous studies, we found
several Faecalibacterium spp, Roseburia spp, and
Blautia spp depleted in PDD.>!" We also identi-
tied other butyrate producers such as
Ruminococcus sp. to be depleted. Interestingly
these species were depleted in PDD but not in
PD-MCI compared to HC. Furthermore, we
found some of these species, e.g.,
Faecalibacterium prausnitzii and Blautia wexlerae,
were also significantly depleted in PDD com-
pared to PD-MCI. Taken together, these results
therefore suggest that depletion of species that
are generally associated with a healthy gut envir-
onment decline as a function of CI and that they
could potentially be used as markers of CI in PD.

There are fewer studies and less consensus on
the compositional changes in the oral microbiome
in PD. However, the recent discovery of
Porphyromonas gingivalis, an oral pathogen caus-
ing periodontitis, in the brains of patients with
Alzheimer’s disease patients brought forth an inter-
est on the functional role of the oral microbiome
and CI *°. We found that P. endodontalis is signifi-
cantly enriched in PDD. Porphyromonas endodon-
talis is also found in patients with chronic
periodontitis and its abundance is correlated with
P. gingivalis.>®> We therefore show for the first time
another species of Porphyromonas that are asso-
ciated with CI and hypothesize that is could poten-
tially play a functional role in PD pathogenesis.

A combination of unsupervised and supervised ML
methodologies reveals functional features and
associations with clinical data

Several studies have explored applying different
ML methods using microbiome data.”®> We have
used both an wunsupervised and supervised
approach and subsequently used model predictions
for functional insights and feature selection.

Unsupervised clustering has previously been
used in metagenomics to establish a defined
compositional signature of microbiome, termed
enterotypes (ENT).*> The concept of the three
distinct enterotypes initially proposed has been
challenged®® and therefore we performed a de
novo enterotype assignment for each sample.
The depletion of a Prevotella enterotype and an
enrichment of a Bacteroides enterotype in the gut
of PD patients recapitulated our previous
study.'> Both PD-MCI and PDD showed
a Bacteroides enterotype, however, PD-MCI also
showed an Alistipes enterotype, a genus showed
to be highly elevated in PD'' and specifically
enriched in PD-MCL® Therefore, our findings
suggest that Alistipes could be a marker for dif-
ferentiation of CI in PD. An interesting observa-
tion was the enrichment of isoleucine
biosynthesis is PDD. Branch-chain amino acid
(BCAA) metabolism in the gut has been linked
to several diseases including correlation between
BCAA levels and PD clinical symptoms.**>”
Using the approach of unsupervised clustering
to identify salivatypes (SAL) has not been per-
formed before in PD. Most notably, the enrich-
ment of SAL1 in PDD because of increased
Prevotella, Veilonella, Rothia and Streptococcus
have enrichment of proline biosynthesis.
Dysregulated proline metabolism has been
shown in neuronal dysfunction and psychiatric
disorders and in particular a recent study has
functionally linked proline metabolism and gut
microbiome in depression.’®>’

Several studies have explored using microbiome
data as input for ML classifiers and more complex
ML models.**>> A major challenge, however, is
development of robust interpreter methods to
identify the most important features that contri-
bute to model prediction. Here, we have used
SHAP that is a state-of-the-art method for this



purpose that we have used in a previous study.*®
We showed that combining gut and oral micro-
biome data significantly improves model predic-
tions, which is important for establishing
clinically feasible biomarkers for PD. We found
that the increase of A. muciniphila, commonly
increased in PD, was an important feature for pre-
diction of PDD against PD-MCI; however,
A. muciniphila was not significantly increased in
PDD when performing differential abundance ana-
lysis. This highlights the value that interpretable
ML models can add to existing microbiome meth-
odologies by identifying trends across the dataset
that contribute to a specific disease phenotype
where the species does not necessarily significantly
change in abundance between groups. Given the
significant influence of diet on microbiome, sys-
tematic investigation of dietary nutrient”®*° on
microbiome composition and functions could elu-
cidate a more mechanistic role of A. muciniphila in
this context.

The depletion of Bacteroides uniformis was an
important feature for differentiating between PDD
and PD-MCI. The dopamine transporter (DAT) is
responsible for transport of dopamine, the most
common treatment for patients with PD. In
a recent study, Hartstra et al. showed that fecal
microbiota transplant of B. uniformis increased
DAT binding and importantly that the gut-brain
axis can be modulated.®’ Our results here therefore
shows that this species might be particularly
important for cognition through dopamine meta-
bolism and that its depletion leads to increased
cognitive decline.

The oralization of the gut lumen correlates with
increased virulence

There have been several studies that have shown
that the translocation of oral bacterial species, often
opportunistic pathogens, to the gut lumen drive
disease phenotypes.’>**°* Although this provides
novel avenues for biomarkers, the underlying
mechanisms and functionality in particular dis-
eases remain largely unclear.

The enrichment of oral VFs in the gut of PD
patients, in particular PDD, shows that these spe-
cies potentially exert specific functions in the gut.
The in-depth network analysis also highlighted
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underlying microbiome community structures
where enriched pathogenic species such as E. coli,
Enterobacter xiangfangensis and Egerthella supress
commensal butyrate producing species such as
Faecalibacterium spp, R. intestinalis and R. faecis.
Competition between commensals and pathogenic
bacteria and an imbalance are known to contribute
to disease and here were show that it correlates
with increased production of VFs by pathobionts
providing mechanistic insights that could be
exploited therapeutically.

Our integrative analysis suggests a potential
mechanistic oral-gut-brain axis mediated by
increased production of VFs in the gut
(Figure 5(c)). In the first instance, several oral
VFs are involved in biofilm formation and adher-
ence. The formation of biofilms on the outer muco-
sal layer can lead to mucosal invasion by bringing
bacteria close to the epithelium that contribute to
a leaky gut. OmpA,* highly connected in our net-
work, is a key VFs that mediate the formation of
bacterial biofilms but has interestingly also been
shown to be a contributor to invasion of brain
microvascular endothelial cells (BMECs) via
ligand-receptor interaction. Together, with the
increased connectivity of genes with similar func-
tion, for example ibeB that has been shown to
invade BMECs,** our findings suggest a mechan-
ism where infiltration of oral factors to the gut
could cross the gut wall and interact with brain
endothelial cells.

We hypothesize that the formation of biofilms in
the gut contributes to overall virulence and dysre-
gulation of the immune system through various
mechanisms. Firstly, we validated two oral VFs,
fepA and fbpC, involved in iron acquisition and
iron metabolism that has been shown to be impor-
tant in the pathogenicity and survival of pathogens
such as E. coli.®® In addition, reactive oxygen spe-
cies (ROS) that are produced as by-products of
metabolism can induce DNA damage and media-
tion through increased carB potentially protects
biofilm formation. Finally, the production of lipo-
polysaccharide (LPS) has been shown to contribute
to several diseases and a leaky gut. Apart from
gmhA that was validated here, several other oral
VFs in the gut were related to LPS metabolism.
Together, we therefore hypothesize that the infil-
tration of the oral microbiome to the gut creates
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a dysregulated microbial community structure,
that promotes a leaky gut, increase pathogen survi-
val which in turn increases LPS production and
other VFs that can interact with BMECs either
directly or indirectly to promote CI and PD
(Figure 5(c)). It is, however, crucial that these find-
ings are supported by experimental data in future
studies to validate the proposed mechanism of
action of VFs in the gut and its contribution to
PD pathology.

Our study provides compelling evidence that the
interplay between oral and gut microbiomes sig-
nificantly influences PD pathology and CI. The
translocation of oral microbial species to the gut,
along with their associated VFs, highlights new
avenues for understanding disease mechanisms
and developing potential biomarkers and therapeu-
tic avenues. The integration of machine learning
techniques and microbiome data enhances our
ability to identify key functional features and
underscores the importance of a multifaceted
approach in advancing our knowledge of PD and
related neurodegenerative diseases.

Study limitations

Our analysis identified several microbiome features
associated with CI in PD. However, disentangling
cognitive features from other PD symptoms
remains challenging. Factors such as disease dura-
tion and severity are known to influence the micro-
biome, and patients with increased disease severity
often also experience CI. While the inclusion of gut
microbiome samples from PD patients without CI
and the correlation of species with disease duration
and UPDRS partially addresses this limitation, it
does not fully resolve the issue.

In addition, our study did not explicitly account
for other host and environmental factors that can
impact the gut and oral microbiome. For example,
factors such as diet, stress, and sleep — known to
influence microbiome composition — may differ in
PD patients and could potentially amplify micro-
biome changes. Similarly, patients with more
severe motor symptoms and CI may have compro-
mised dental care, which could significantly affect
the oral microbiome composition. The MDS-
UPDRS stage II questionnaire, for example, con-
tains a section on dental hygiene, and could be used

more explicitly to assess its impact on CI and PD.
Another important factor that could impact micro-
biome composition related to PD severity and CI is
physical activity or exercise that we also did not
account for. There have been several studies that
show how physical activity impacts gut micro-
biome composition and metabolism and future
studies would benefit from more explicit assess-
ment of this. Together, these limitations highlight
the need for future studies to control for or mea-
sure several environmental variables to better
understand their contributions to microbiome
changes in CI of PD patients.

Methods

Study subjects, clinical characteristics and sample
collection

The study was approved by the ethics committee at
participating institutions (with the authorization
number covering Medipol University Research
and Training Hospital and Bakirkoy Research and
Training Hospital for Psychiatric and Neurological
Diseases 10,840,098-604.01.01-E.3958, respec-
tively; and GOKAEK-2018/365/20.13 for Kocaeli
University Research and Application Hospital),
and informed consent was obtained from all parti-
cipants prior to the study.

Between 2018 and 2022, a total of 140 subjects
(HC =26; PD =20, PD-MCI = 41; PDD =47) were
recruited from the neurology clinics of these ter-
tiary training hospitals. This case-control study
used a subset of samples from a larger cohort (N
=176), recruited into an ongoing study on CI in
PD. The subset was chosen based on the availability
of both saliva and fecal samples. Healthy control
subjects (HC) were recruited mainly from family
members of patients, hospital staff, and students,
and from individuals who responded to study
advertisement. Saliva and fecal samples were placed
on ice immediately upon collection and transferred
to a —80°C freezer within 30 minutes without
a preservation buffer, where they were stored
until transport. At one-month intervals, samples
were shipped to the research laboratory on dry
ice, with delivery completed within one hour, and
stored until further processing. Clinical data,
including drug intake, and demographic



information, including age, gender, years of educa-
tion were collected at clinic visits (Supplementary
Table S1). The patients were examined by experi-
enced neurologists and the diagnosis of PD was
made within the framework of the “United
Kingdom Parkinson’s Disease Society Brain Bank”
criteria. Two well-trained interviewers from
Department of Psychology conducted all assess-
ments following a standardized protocol. The use
of standardized administration and scoring proce-
dures helped mitigate potential biases in measure-
ment. Subjects with previous head trauma, stroke,
or exposure to toxic substances, substance abuse,
history of antibiotic or probiotic use within last
one-month, chronic severe diseases (diabetes, can-
cer, kidney failure, etc.), autoimmune diseases,
smokers, and those with symptoms suggestive of
Parkinson’s plus syndromes were excluded from
the study. The Hoehn-Yahr Stages Parkinson’s
Staging Scale was utilized to assess the disease
stage, while The Movement Disorder Society’s
diagnostic criteria for Parkinson’s Disease
Dementia were employed for evaluating
dementia.®® The diagnosis of Mild Cognitive
Impairment (MCI) was established following the
guidelines outlined by Litvan et al.,” employing
level II criteria. This involved conducting
a thorough cognitive assessment utilizing the
MDS task force diagnostic criteria, which com-
prises neuropsychological evaluations covering
two tests for each of the five cognitive domains.

Sample preparation and metagenomics sequencing

A total of 228 samples (114 stool and 114 saliva)
(HC =26, PD-MCI =41, PDD =47) were used for
shotgun metagenomics sequencing. An additional
20 stool samples from PD patients without CI,
termed PD, were also used for shotgun metage-
nomics sequencing. Microbial DNA was extracted
from saliva samples using the DNeasy PowerSoil
kit (Qiagen, Hilden, Germany) with previously
described modifications.*® For stool samples, the
same extraction kit was used with adjustments to
the manufacturer’s protocol. Stool samples were
transferred to the PowerBead tube and homoge-
nized by bead-beating using a Next Advance Bullet
Blender (30 s at level 4, 30 s incubation on ice, and
30 s at level 4). Subsequently, the manufacturer’s
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protocol was followed without further modifica-
tion. The purity and concentration of the extracted
genomic DNA were measured using the Qubit 2.0
Fluorometer (Thermo Fisher Scientific, MA, USA).
No human DNA depletion or microbial DNA
enrichment was performed before sequencing.
A DNA extraction negative control and a no-
template PCR control were included and
sequenced to identify potential microbiome con-
tamination from reagents or the environment.
Saliva and stool samples were processed in separate
batches. To minimize batch effects, samples were
randomized prior to DNA extraction, library pre-
paration, and sequencing. Furthermore, we
included technical replicates to enhance data
robustness and reproducibility, with indepen-
dent replicates at key stages, such as separate
extractions from the same sample to assess
nucleic acid consistency and duplicate sequen-
cing to evaluate technical variability. Shotgun
sequencing libraries were prepared according to
[lumina’s Nextera XT library preparation pro-
tocol and sequenced using a NovaSeq600 plat-
form with a 2x 150 paired-end kit. All stool
samples passed quality control and a total of
107 saliva samples passed quality control (HC
=26, PD-MCI =37, PDD =44).

Microbial gene and metagenomics species (MGS)
quantification

Raw sequencing reads were mapped and counted
using the METEOR pipeline (available at: https://
github.com/sysbiomelab/meteor_pipeline). For gut
samples, the IGC2 gene catalog’® of human gut
microbiome was used as reference and for oral
samples the HS_8.4_oral gene catalog40 was used.
Mapping was performed using a >95% identity
threshold to account for gene variability and
the non-redundant nature of the catalog
(Suplementary Table S2). This generated gene
count matrices that were then subjected to down-
sizing and normalization (reads per kilo base
per million mapped reads (RPKM method)) to
generate the gene frequency matrix for down-
stream analysis. For the gut samples, downsizing
was done at 5 million reads before normalization to
correct for differences in sequencing depth. After
downsizing a total of 126 samples were remaining
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(HC =22, PD =20, PD-MCI =40, PDD =44) and
for the oral samples, only normalization was per-
formed (Figure S1A, Supplementary Table S2). The
resulting gene matrices were then projected on
previously reconstructed metagenomic species
(MGSs) using the top 50 marker genes per MGS
to calculate MGS abundances for each sample
(Supplementary Table S3). Analysis was performed
using the R package MetaOMineR (momr)
designed to analyze large quantitative metage-
nomics datasets.®®

Functional gene annotation and analysis

The normalized gene count matrices were
annotated for functional investigation. Amino
acid sequences of the gut and oral catalogs
were aligned to amino acid sequences of
KEGG orthologs (KEGG database version
82)%° using Diamond (version 0.9.22.123)7°
and best hit alignments with e-value <107°
and bit scores 260 were considered. Amino
acid sequences of the gut and oral catalogs
were aligned to amino acid sequences of pro-
teins in the PATRIC database’' using BLASTP
and best hit alignments with e-value <107'°
and identity of>80% were considered. The
virulence factor database (VFDB) incorporates
the PATRIC database and gives more in depth-
annotations and descriptions.”> We therefore
enhanced the PATRIC databases annotations
with that of VFDB. This was then used to
calculate gene abundances for metabolic genes
and virulence factors. For enriched and
depleted KEGG modules we first identified dif-
ferentially abundant metabolic genes using
Wilcoxon rank-sum tests. For comparison of
clinical study groups in Figure 1(h) we used
a p-value cutoff of 0.05 and for comparison
between enterotypes and salivatypes (Figure 2(d,h))
we used a p-value cutoff of 0.01. For both analyses
only genes with a log,foldchange of 2 or more were
considered. We then used these genes to identify
significantly enriched or depleted KEGG modules
using hypergeometric tests adjusted for false discov-
ery using the Benjamini-Hochberg procedure and
considered p-adjusted <0.05 as significantly chan-
ging modules.

Richness, diversity analysis and differential
abundance analysis

Richness was calculated as the sum of the number of
MGS per sample and Shannon diversity was calcu-
lated using the skbio package in Python. Beta-
diversity was done by first calculating the Bray-
curtis distance between all samples using the distance
function in scipy and then performing principal coor-
dinate analysis using the skbio package. For differen-
tial abundance analysis the calculated abundances of
MGSs were mapped to different taxonomical ranks
(phylum, class, order, family, genus, or”’species) and
the sum of each taxon calculated per sample. We then
used Wilcoxon rank-sum tests with false discovery
rate adjustment using the Benjamini-Hochberg pro-
cedure to calculate differentially abundant microbes
at these different taxonomical ranks. Details of statis-
tical cutoffs can be found in the text.

Machine learning classification to predict clinical
outcomes

We used the Scikit-learn python package to train
random forest (RF) and support vector classifica-
tion (SVC) models to predict different clinical
outcomes.”* Training and testing were performed
on randomly selected samples split 70% and 30%
of the full dataset, respectively, with a fixed ran-
dom seed to ensure the reproducibility of the
model. The following hyperparameters were set
for the RF model: ‘random_state’: 1, ‘n_estima-
tors> 500, ‘bootstrap’ True and for the SVC
model: ‘random_state’: 1. All other parameters
were kept as their default. Model performance
was measured using AUROC scoring and accu-
racy. Python implementation of the explainable
AI algorithm, Shapley Additive ExPlanations
(SHAP), was used to show the feature (species)
contribution to disease classification the mean
absolute SHAP score for each disease predictive
model was determined using the sign of the
Spearman rank correlation between the feature
value and the SHAP score. Positive values indi-
cate that a higher relative abundance is more
likely to classify the disease than in healthy sam-
ples. Negative values indicate that a lower relative
abundance is more likely to classify the disease
than in healthy samples.



Integrative correlation network analysis of VFs and
MGSs

We first mapped the gut metagenomes against the
oral gene catalog to identify oral specific genes in
the gut. Enriched and depleted VFs were calculated
using Wilcoxon rank-sum tests (p-value <0.05) con-
sidering a positive and negative log-fold change,
respectively. We then performed a Spearman’s
rank correlation between enriched VFs and MGSs
in the gut and oral, respectively, using a p-value
cutoff of 0.01. The protein sequences of enriched
VFEs were aligned to previously generated saliva
metaproteomics using BLASTP with an e-value cut-
off of 1077 and percentage identity of higher than
50. The integrative network was then visualized in
Cytoscape and used to calculate the degree of con-
nections of each node.
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