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ABSTRACT
The human microbiome is increasingly recognized for its crucial role in the development and 
progression of neurodegenerative diseases. While the gut-brain axis has been extensively studied, 
the contribution of the oral microbiome and gut-oral tropism in neurodegeneration has been largely 
overlooked. Cognitive impairment (CI) is common in neurodegenerative diseases and develops on 
a spectrum. In Parkinson’s Disease (PD) patients, CI is one of the most common non-motor symptoms 
but its mechanistic development across the spectrum remains unclear, complicating early diagnosis 
of at-risk individuals. Here, we generated 228 shotgun metagenomics samples of the gut and oral 
microbiomes across PD patients with mild cognitive impairment (PD-MCI) or dementia (PDD), and 
a healthy cohort, to study the role of gut and oral microbiomes on CI in PD. In addition to revealing 
compositional and functional signatures, the role of pathobionts, and dysregulated metabolic path
ways of the oral and gut microbiome in PD-MCI and PDD, we also revealed the importance of oral- 
gut translocation in increasing abundance of virulence factors in PD and CI. The oral-gut virulence 
was further integrated with saliva metaproteomics and demonstrated their potential role in dysfunc
tion of host immunity and brain endothelial cells. Our findings highlight the significance of the oral- 
gut-brain axis and underscore its potential for discovering novel biomarkers for PD and CI.
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Introduction

Neurological disorders are the leading cause of 
physical and cognitive disability around the 
world, currently affecting approximately 15% of 
the worldwide population and expected to increase 
in future decades due to an aging population, 
industrialization and changes in environmental 
impacts.1–3 Parkinson’s Disease (PD) is a complex 
neurodegenerative disease with the fastest growing 
prevalence worldwide.2,4 While it is primarily char
acterized by motor symptoms such as involuntary 
shaking, slow movements, and muscle stiffness, 

one of its most common non-motor dysfunctions 
is cognitive impairment (CI). There is a high risk of 
dementia in patients with PD with nearly half of 
patients reaching the dementia stage within 10  
years after diagnosis and virtually all patients 
develop full dementia within 20 years after 
diagnosis.5 CI develops on a spectrum that ranges 
from mild cognitive impairment (MCI) to full- 
scale dementia.4,6,7 Identification of the risk of 
developing CI and cognitive decline are important 
for clinical management of NDs.5 However, the 
evaluation of cognition remains challenging and 
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there is currently an unmet need on whether 
patients with neurodegenerative diseases have CI 
or are at risk for further cognitive decline. Non- 
genetic factors, such as microbiome and environ
mental impacts, including diet, pollution, and 
drugs exposure, may have a significant role in 
this.8,9

A growing body of evidence links the gastroin
testinal (GI) tract with neurodegenerative diseases, 
including PD, and GI dysfunction is common in 
patients with PD.10,11 As such, several studies have 
investigated the role of the gut microbiome in PD 
for novel diagnostic and treatment avenues as well 
as a better understanding of the gut-brain axis.12 

Several studies consistently indicated an increased 
abundance in Akkermansia, Bfidobacterium and 
Lactobacillus, and a depletion in butyrate produ
cers such as Roseburia, Faecalibacterium and 
Blautia in PD patients.2 One of the key mediating 
factors of the gut microbiome composition is 
microbial metabolites and virulence that can have 
an impact on PD and CI onset and progression. 
This could be through induction of neuroinflam
mation and oxidative stress that exacerbate 
neurodegeneration.13,14 Among microbial metabo
lites, short chain fatty acids (SCFAs) production 
and especially butyrate has shown to have neuro
protective effects.15 At the same time, the secretion 
of bacterial endotoxins and cell components have 
been increasingly linked to the pathogenesis of 
NDs and, in particular PD.16,17 The presence of 
the lipopolysaccharides (LPS), a major component 
of gram-negative bacteria and indication of the 
gut-brain axis dysfunction, in blood can activate 
microglia and eventually leads to chronic neuroin
flammation. LPS can also promote α-synuclein 
aggregation, a hallmark of PD and its progression, 
which could also lead to further neurodegeneration 
and CI.18 Release of gram-positive bacterial com
ponents such as peptidoglycan and lipoteichoic 
acid, could stimulate immune responses and pro
mote the secretion of proinflammatory cytokines 
and contribute to the neuroinflammation.19,20

Similarly, oral health of PD patients has also 
been shown to impact the course of disease.21 α- 
synuclein, the molecule that forms aggregates in 
neurons in PD, can be detected in saliva. The pre
sence of α-synuclein in the oral cavity frequently 
results in reduced saliva production and difficulty 

swallowing,22,23 and report the association of NDs 
with dysphagia. Oral bacteria contribute to chronic 
inflammation and neurodegeneration through var
ious mechanisms. Opportunistic pathogens in the 
oral cavity, which proliferate due to dysbiosis 
within the oral ecosystem, can form biofilms 
leading to bacterial overgrowth.24–26 These 
biofilms, often associated with gingivitis and 
periodontitis,27 enable bacteria to enter the blood
stream, potentially causing bacteremia and sys
temic inflammation.28 Porphyromonas gingivalis is 
a well-studied oral pathogen and has been observed 
in Alzheimer’s disease (AD) brains and active per
iodontitis have been reported to impact CI,29–31 

and in bacteremia cases it can induce blood-brain 
permeability.32 The presence of inflammation, bac
teremia, and dysfunction of the mucosal barriers 
can lead to spontaneous dissemination of bacteria 
across tissues.33 Simultaneously, the use of specific 
drugs, such as proton pump inhibitors and anti
biotics, to treat stomach reflux, gastritis, and ulcers, 
that are common conditions in PD patients,34 

modulate and accelerate microbial 
translocation.35,36 The presence of oral pathobionts 
and their overgrowth, exacerbates gut dysbiosis 
and systematic inflammation, as has been reported 
in several other diseases.37,38

In this study we used metagenomics of feces and 
saliva in a cohort of PD patients that has no CI, has 
MCI (PD-MCI) or full dementia (PDD), together 
with a healthy control cohort. We hypothesize that 
compositional and functional differences in the 
microbiomes exist along the CI spectrum and that 
these differences, in turn, impact PD progression. 
We use a combination of machine learning 
approaches together with functional, correlative 
and network analyses to associate microbiome 
changes with CI. Through this, we aim to establish 
an oral-gut-brain axis in PD to bring forth a more 
mechanistic understanding of the human micro
biome in ND.

Results

Gut and oral microbiome composition is associated 
with cognitive decline in Parkinson’s disease

We performed shotgun metagenomics on 228 sal
iva and fecal samples taken from 41 Parkinson’s 
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Disease (PD) patients with mild cognitive impair
ment (PD-MCI), 47 patients with full dementia 
(PDD) and 26 healthy controls (HC) (Figure 1(a), 
Supplementary Table S1). Additionally, we 
sequenced 20 fecal samples from PD patients 

without CI. The age and gender distribution 
between the PD-MCI and PDD groups were simi
lar (Table 1, Figure 1(b)), with a mean age of 67.27  
years (SD = 8.75 years) and 70.89 years (SD = 7.34) 
for PD-MCI and PDD, respectively, and 34.15% 

Figure 1. Gut and oral microbiome dysbiosis in PD patients with different degrees of cognitive impairment. (a) Study and 
methodology overview. A total of 114 individuals were included in the study. This included 41 PD patients with mild cognitive 
impairment (PD-MCI), 47 patients with full dementia (PDD) as well as 26 healthy controls (HC). Saliva and fecal samples were collected 
from all individuals and used for DNA extraction to perform shotgun metagenomics (Methods). We first performed intra-tissue analysis 
by investigating compositional and functional microbial changes in gut and oral separately. Thereafter, we combined gut and oral 
data to perform predictive modeling using machine learning. Finally, we investigated whether the translocation of oral species to the 
gut potentially impact disease. (b) Demographic features of study population. Distribution of age and gender for HC, PD-MCI and PDD 
patients. (c) Key cognitive features of study population. Distribution of scores for the mini mental state examination (MMSE) and CDRS 
scores. (d) Key motor parameters of study population. Distribution of UPDRS, HYE and disease duration (months). (e) Shannon diversity 
and MGS richness of the gut microbiome. Significance was calculated with a Wilcoxon rank-sum test with an asterisk (*) indicating 
p-value <0.05. (f) Shannon diversity and MGS richness of the oral microbiome. Significance was calculated with a Wilcoxon rank-sum 
test with an asterisk (*) indicating p-value <0.05. (g) Relative abundance changes of genera in the gut microbiome. MGS were mapped 
to their corresponding genus and differentially abundant genera were calculated using Wilcoxon rank-sum test with a p-value cutoff 
of 0.05. Significantly changing genera were visualized using normalized mean abundance by calculating Z-scores for each genus. 
Arrows indicate either a significant depletion (blue) or increase (red) of the abundance of a genus. (h) Metabolic pathway enrichment 
of different patient populations. The gene counts of all samples were used to map against the KEGG database to calculate genes 
counts for metabolic genes that were then used for enrichment analysis by first calculating differentially abundant genes using 
Wilcoxon rank-sum tests. Enrichment of KEGG modules were then performed using hypergeometric enrichment with a p-value cutoff 
of 0.05. (i) Relative abundance changes of genera in the oral microbiome. MGS were mapped to their corresponding species and 
differentially abundant species were calculated using Wilcoxon rank-sum test with a p-value cutoff of 0.05. Significantly changing 
species were visualized using normalized mean abundance by calculating Z-scores for each species. Arrows indicate either 
a significant depletion (blue) or increase (red) of the abundance of a species.
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and 40.43% of females for PD-MCI and PDD, 
respectively. Cognitive assessment using the 
Mini-Mental State Examination (MMSE) and 
Clinical Dementia Rating Scale (CDRS) revealed 
a significant difference between PD-MCI and 
PDD patients (Table 1, Figure 1(c)). Additionally, 
motor function parameters, including the Unified 
Parkinson’s Disease Rating Scale (UPDRS), Hoehn 
and Yahr Scale (HYE), and disease duration, also 
showed significant differences between the two 
groups (Table 1, Figure 1(d)). Overall, these find
ings indicate that patients with MCI exhibit distinct 
cognitive and motor characteristics compared to 
those with full dementia.

To study the in-depth compositional and func
tional changes of the gut and oral microbiomes on 
cognitive impairment and progression in PD, we 
performed deep sequencing with an average of 31.9 
reads and 28.2 million reads per sample, respec
tively, and quantified microbial genes and metage
nomic species (MGSs) (Figure 1(a)). Stool and 
saliva samples were mapped to respective gene 
catalogs39,40 to satisfactory standard with and aver
age mapping rate of 67.50% and 39.32%, respec
tively, which allowed us to confidently proceed 
with downstream analysis to identify MGSs 
(Figure S1A, Supplementary Table S2, 
Supplementary Table S3, Supplementary Table 
S4). Our analysis revealed a significant decrease in 
gut microbiome diversity in PDD patients com
pared to those with PD-MCI (Figure 1(e)) and 
a decrease in both diversity and MGS richness in 
the oral microbiome of PDD patients (Figure 1(f), 
Method). Taxonomic profiling at the phylum level 

in gut and oral microbiome showed Actinobacteria 
was increased in the gut of PD-MCI and PDD 
patients while Bacteroidetes was decreased (Figure 
S1B, Figure S1C, Supplementary Table S5). In the 
oral cavity we found a decrease in Actinobacteria, 
Bacteroidetes, Firmicutes, Proteobacteria and 
Spirochaetes, specifically in PDD patients. These 
findings suggest that global alterations in both gut 
and oral microbiomes are present and may be 
linked to cognitive decline in PD.

To further investigate how the composition of 
the microbiome changes at varying levels of cogni
tive impairment, we performed differential abun
dance testing of MGSs together with functional 
enrichment analysis. In the gut microbiome, we 
identified three clusters of signatures characterized 
by distinctly different genera (Figure 1g). The first 
genera cluster showed the enrichment of species 
for Bifidobacterium longum, Bilophila wads
worthia, Ruthenibacterium lactatiformans in PD- 
MCI patients (Figure S1D). Notably, consistent 
with a previous report, Desulfovibrio genus also 
increases with PD severity.41 These species were 
functionally enriched for energy generating 
metabolic pathways such as citrate cycle, as well 
inositol-phosphate metabolism but depleted 
for glutathione biosynthesis (Figure 1(h)). 
The second cluster represents a significant enrich
ment in PDD patients with opportunistic pathogen 
species from genera such as Olsenella sp. Marseille- 
P2912 and Hungatella (Figure S1D) and with func
tional enrichment like those of PD-MCI but addi
tionally enriched for several amino acid transport 
systems (Figure 1(h)). The third cluster represents 

Table 1. Demographic and clinical features of the study cohort.
HC PD PD-MCI PDD

Demographic features
Age* (years, mean ± std) 59.62 ± 8.30 62.40 ± 10.03 67.27¶±8.75 70.89 ± 7.34
Gender (Female) 15 (57.69%) 6 (30.00%) 14 (34.15%) 19 (40.43%)
Education (years mean ± std) 59.62 ± 8.30 – 67.27 ± 8.75 70.89 ± 7.34
Cognitive features
MMSE† (mean ± std) 28.00 ± 1.85 28.35 ± 1.53 23.34 ± 3.42 19.66 ± 3.58
CDR (mean ± std) 0.00 ± 0.00 – 0.50 ± 0.00 1.15 ± 0.36
Motor features
UPDRS‡ (mean ± std) – 39.75 ± 19.02 35.59 ± 16.16 47.70 ± 17.60
HYE§ (mean ± std) – 2.25 ± 0.98 1.97 ± 0.90 2.54 ± 0.86
PD duration| (months, mean ± std) – 63.60 ± 80.77 69.88 ± 49.67 105.20 ± 56.85

*.PDD vs. HC, PDD vs. PD, PD-MCI vs. HC. 
†.PDD vs. PD-MCI, PDD vs. HC, PDD vs. PD, PD-MCI vs. HC, PD-MCI vs. PD. 
‡.PDD vs. PD-MCI. 
§.PDD vs. PD-MCI. 
|.PDD vs. PD-MCI, PDD vs. PD. 
¶.Note: Pairwise Kruskal–Wallis tests was performed for all demographic and clinical features with significance comparisons indicated below.
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a distinct depletion signature characteristic in PDD 
patients that predominantly consists of commensal 
and beneficial microbes. Several butyrate- 
producing microbes such as Roseburia faecis, 
Faecalibacterium prausnitzii together with several 
Ruminococcus species were all depleted in PDD 
compared to PD-MCI (Figure 1(g), Figure S1D). 
In addition, compared to HC patients, PDD 
patients also show enrichment of B. longum, 
B. adolescentis, R. lactatiformans (Figure S1E). We 
then reconstructed a correlation network using the 
gut microbiome genera of these three clusters 
which showed that cluster 1 and cluster 2 have an 
overall negative correlation with cluster 3 further 
supporting that the depletion signature in PDD 
identified in cluster 3 (Figure S1F). As expected, 
genera in cluster 2 had a stronger negative correla
tion with cluster 3 compared to cluster 1 and cluster 
3, however, we interestingly also observed a strong 
negative correlation between Bifidobacterium in 
cluster 1 and other genera in cluster 3 suggesting 
that Bifidobacterium is a strong driver in gut micro
biome community structures and that its increase 
leads to depletion of other species.

To identify whether observed species changes 
are a result of CI, we compared differentially abun
dant species in PD-MCI and PDD in the gut with 
differentially abundant species in PD patients with
out CI, termed PD (Figure S1H, Supplementary 
Table S5). Patients classified as PD had signifi
cantly different MMSE scores compared to PD- 
MCI and PDD patients but did not differ signifi
cantly from healthy controls (HC), suggesting that 
they likely did not have CI (Table 1). When com
paring all three PD groups with HC, we identified 
a limited number of overlapping species. 
Specifically, eight enriched and three depleted spe
cies in PD overlapped with either PD-MCI or PDD 
(Figure S1H, Figure S1I). Notably, many species 
were uniquely enriched or depleted in PD-MCI or 
PDD, suggesting that these microbial changes are 
likely associated with CI

Diagnosing CI in PD remains challenging due to 
its subjective nature the difficulty in distinguishing 
CI features from motor symptoms, such as those 
assessed by the UPDRS, and disease duration. To 
address this, we stratified patients into tertiles based 
on UPDRS scores and disease duration, respectively, 
and identified differentially abundant species 

associated with these factors. We found that a total 
of 40 species differentially enriched or depleted 
because of UPDRS, while 65 species were associated 
with disease duration (Figure S1J). Interestingly, 43 
species were uniquely enriched or depleted because 
of CI (Figure S1K). This group included key buty
rate-producing species such as Faecalibacterium 
prausnitzii, Bifidobacterium dentium, B. bifidum 
and Roseburia sp. To further assess the relationship 
between microbial changes and PD-related factors 
we also constructed linear regression models to test 
if any of the enriched or depleted species were cor
related with UPDRS or disease duration. We identi
fied 12 gut species significantly correlated with 
either factor (Figure S2A, p-value <0.05). Among 
them, Butyrate-producing Ruminococcus sp., which 
was found to be depleted in PDD because of CI, was 
associated with both UPDRS and disease duration. 
Other species included, Hungatella hathewayi, 
Klebsiella pneumoniae, Desulfovibrio fairfieldensis, 
Bacteroides stercoris, Senegalimassilia anaerobia, 
Parabacteroides merdae, Gemmiger formicilis, 
Anaerotruncus sp., Acidaminococcus sp., 
Clostridium sp. In the oral microbiome, 
Streptococcus pneumoniae, Megasphaera micronuci
formis, Treponema denticola, Atopobium parvulum 
were significantly associated with either of UPDRS 
and disease durations. Since these species strongly 
correlate with PD motor severity (UPDRS) and dis
ease duration, their changes are likely driven by 
overall PD progression rather than being specific to 
cognitive impairment, as they are also influenced by 
broader PD-related factors.

In the oral cavity, we observed an overall deple
tion of several species in PD-MCI and PDD 
patients compared to HC, which could show the 
loss of diversity and commensalism in the oral 
cavity and opportunity for pathogens to triumph 
(Figure S1G). We did, however, find a significant 
increase in abundance of Oribacterium asacchar
olyticum in PD-MCI (Figure 1(I)). Other potential 
pathogenic species such as Streptococcus pneumo
niae and Prevotella pallens were also increased 
in PD-MCI compared to HC, albeit not signifi
cantly. Our functional enrichment showed that 
hexose sugar transport, chemosensory two com
ponent regulatory system and neocarzinostatin 
antibiotic biosynthesis are enriched in PD-MCI 
(Figure 1(h)).
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Enterotypes and salivatypes revealed distinct 
functional features for Parkinson’s disease and 
cognitive impairment

To understand the compositional changes of gut 
and oral communities we performed principal 
coordinate analysis (PCoA). Although there was 
a statistically significant separation in the gut 
(gut; PERMANOVA p-value = 0.017, oral; 
PERMANOVA p-value = 0.495), the clustering in 
both cases were discernible (Figure S2B, Figure 
S2C). Dirichlet multinomial mixture modeling 
has previously been shown to bring about hidden 
community structures in microbiome data that 
otherwise cannot clearly be distinguished with 
supervised clustering methods.42 Using this 
approach, we identified three clusters for gut 
microbiome, termed enterotypes, enriched for dif
ferent bacterial genera (ENT1,2 and 3; Figure 2(a)). 
Our clinical study groups (PD-MCI and PDD) 
were enriched with different enterotypes 
(Figure 2(b)), and we found significant clustering 
of enterotypes using PCoA (Figure 2(c)). HC 
patients were enriched for ENT2 with a distinct 
signature of commensal Prevotella bacteria while 
PD-MCI and PDD showed a decrease in ENT2 
instead. ENT2 was depleted for cytochrome 
C oxidase that potentially indicate deficient energy 
metabolism in the gut of PD patients (Figure 2(c)). 
PD-MCI patients were enriched for ENT1 that 
showed a signature for Bacteroides and Alistipes. 
PDD were enriched for Bacteroides of ENT1 and 
ENT3. ENT3 in PDD was depleted for aminoacyl- 
tRNA biosynthesis and ribosomal pathways sug
gests overall less translation of proteins and 
a reduction in citrate cycle pathways can poten
tially also indicate reduced production of SCFAs. 
In contrast, branch-chain amino acid (BCAA) pro
duction such as isoleucine was enriched which has 
been shown to be linked to different diseases 
including PD.43–46

We then identified three clusters, termed saliva
types, in the oral cavity (SAL1, 2 and 3; 
Figure 2(e)). This result pointed out the PD-MCI 
and PDD groups were enriched to different saliva
types (Figure 2(f)), and salivatypes clustered signif
icantly using PCoA (Figure 2(g)). SAL1, enriched 
in PDD patients, was increased in pathobionts such 
as Streptococcus, Rothia and Veillonella and showed 

an enrichment for proline biosynthesis. PDD 
patients also showed a depletion in SAL2 that 
were dominated by Neisseria. Interestingly, SAL2 
were enriched for multidrug resistance and its 
depletion in PDD potentially indicate a dysfunc
tional microbial community.

Gut and oral biomarkers accurately predict clinical 
phenotypes

The observation that patients can be stratified by 
their gut and oral microbiomes could reflect the 
potential to use the microbiome for prediction of 
clinical outcomes and further be extended to iden
tify novel prognostic biomarkers. We therefore 
used the abundances of gut and oral microbial 
species together with clinical metadata as features 
for predicting clinical outcomes (PD-MCI and 
PDD) using two machine learning (ML) algorithms 
and then used SHapley Additive exPlanations 
(SHAP) scoring to interpret model predictions 
and explain the contribution of features, or species, 
toward model predictions.

In four different predictions, we used gut 
(SIM1), oral (SIM2), both (SIM3; gut and oral) 
and both together with age, gender, and education 
(SIM4) of these patients, as features for ML predic
tion. Using AUCROC and accuracy we showed 
that SIM4 performed the best compared to other 
models with an average AUCROC of 69.42% and 
average accuracy score of 66.91% (Supplementary 
Table S6 , Methods). It was particularly interesting 
to see that the inclusion of clinical metadata (age, 
gender, and education) improved the AUCROC 
score. We therefore focussed further analysis and 
feature selection on outcomes of SIM4 that 
included gut and oral species abundances together 
with clinical metadata.

We first showed accurate prediction of PD-MCI 
compared to HC (AUCROC: SVC = 0.84, RF =  
0.89; Accuracy: SVC = 0.88, RF = 0.77; Figure 3(a), 
Methods) as well as PDD compared to HC 
(AUCROC: SVC = 0.82, RF = 0.86; Accuracy: 
SVC = 0.73, RF = 0.78; Figure 3(b)). Of particular 
interest was to assess whether the microbiome can 
be used to distinguish different levels of cognitive 
decline by comparing PD-MCI and PDD patients. 
It was therefore supportive to also accurately pre
dict PDD compared to PD-MCI (AUCROC: SVC  
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= 0.59, RF = 0.57; Accuracy: SVC = 0.45, RF = 0.5; 
Figure 3(c)). Furthermore, in predicting PDD ver
sus PD-MCI the inclusion of clinical metadata in 
SIM4 improved the AUCROC and accuracy of the 
model compared to SIM3 where only gut and oral 

metagenomics was used (AUCROC: SIM3 = 0.41, 
SIM4 = 0.58; Accuracy: SIM3 = 0.395, SIM4 =  
0.475; Supplementary Table S6). This indicates 
that microbial species changes are sensitive enough 
to differentiate between PD with varying clinical 

Figure 2. Enterotypes and salivatypes have distinct functional features. (a) Heatmap showing the genus abundance for three 
enterotypes (ET). Using dirichlet multinomial clustering we identified an optimal number of three clusters that differentiate the gut 
microbiome composition termed enterotype 1–3 (ENT1–3). Each cell in the heatmap depicts the relative abundance of a particular 
genus to each sample. (b) Fraction of samples classified as ENT1–3 for HC, PD-MCI and PDD, respectively. (c) PCoA of gut samples. The 
Bray-Curtis distance between all samples were calculated using species abundances and then used to perform PCoA. Each sample in 
the PCoA plot was colored according to its assigned enterotype.(d) functional enrichment of KEGG modules for ENT1–3. (e) Heatmap 
showing the genus abundance for three salivatypes (SAL). Using dirichlet multinomial clustering we identified an optimal number of 
three clusters that differentiate the oral microbiome composition termed salivatype 1–3 (SAL1–3). Each cell in the heatmap depicts the 
relative abundance of a particular genus to each sample. (f) Fraction of samples that were classified as SAL1–3 for HC, PD-MCI and 
PDD, respectively.(g) PCoA of oral samples. The Bray-Curtis distance between all samples were calculated using species abundances 
and then used to perform PCoA. Each sample in the PCoA plot was colored according to its assigned salivatype. (h) Functional 
enrichment of KEGG modules for SAL1–3.
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features, and the inclusion of additional features 
like age and gender can significantly improve 
model predictions.

We then applied SHAP interpretation on the ML 
outputs to determine the contribution of species to 
model predictions (Methods). Several species that 
were significantly dysregulated (Supplementary 

Table S5) were also identified as important features 
for predicting PD-MCI and PDD. The decrease 
in beneficial bacteria such as Faecalibacterium 
prausnitzii, Roseburia faecis, Roseburia inulinivor
ans, Eubacterium rectale in the gut together with 
a decrease of Treponema denticola, Porphyromonas 
endodontalis and Actinomyces in the oral cavity 

Figure 3. Machine learning models using gut and oral microbial species accurately predicts PD clinical phenotypes. a-c) random forest 
(RF) and support vector classification (SVC) models for prediction of clinical state. Using the species abundances of gut and oral 
metagenomes as features, two machine learning models were built to predict PD-MCI versus HC (a), PDD versus HC (b) and PDD versus 
MCI (c). The ROC curves show good AUC for all models. d-e) top features contributing to RF prediction in three different models. Using 
SHAP calculations we calculated the contribution of features (gut and oral microbial species, d and e, respectively) to the prediction of 
each model. The asterisks indicate whether these species were found to be significantly dysregulated using differential abundance 
analysis (table S5). (f) association of features to clinical metadata. Model features (species abundances) was correlated with clinical 
metadata using spearman rank correlation. The significant associations (p-value <0.01) are indicated with asterisks (*) and the color is 
indicative of the correlation coefficient.
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were the most important features in predicting 
PDD (Figures 3(d,e)) Bacteroides uniformis impor
tant for PDD prediction, have been shown to be 
associated with PD by increasing DAT (dopamine 
transporter) binding of dopamine and its decrease 
associated here with PDD might indicate poor 
dopamine metabolism that cause cognitive 
decline.47 It was also interesting to see that the 
increase in Akkermansia muciniphila that has pre
viously been associated with PD2,12 was an impor
tant feature for PDD prediction. The fact that the 
abundance of A. muciniphila did not significantly 
change in PDD using differential abundance ana
lysis but with predictive modeling shows the value 
of using ML together with differential abundance. 
Another interesting observation was that species 
belonging to the Bfidiobacterium genus, also pre
viously shown to be important in PD pathogenesis, 
were important features for predicting PD-MCI 
and PDD. However, B. longum and B. bifidum 
were associated with PD-MCI prediction while 
B. adolescentis was associated with PDD.

We finally associated top predictor species with 
clinical metadata and found several correlations 
(Figure 3(f)). For example, the abundance of 
E. rectale, F. prausnitzii and R. faecis showed 
a significant association with MMSE (Figure 
S3A). Other cognitive parameters also showed an 
overall positive correlation with these species. For 
example, Fusicatenibacter saccharivorans showed 
a positive correlation with categorical fluency tests 
of patients (Figure S3B). Motor parameters such as 
UPDRS, in addition, had correlation with oral 
pathogen Tannerella forsythia (Figure S3C).

Oral microbiome in the gut is enriched for virulence 
factors that contributes to PD pathophysiology and 
cognitive decline

The translocation of oral-specific microbial species 
or features to the gut lumen, a phenomenon 
termed oralization of the gut, has previously been 
associated with different diseases.48,49 As men
tioned in the introduction, the migration of bac
teria, and even fragments of their genomes to other 
body sites and tissues,50 can increase the release of 
bacterial metabolites and cellular components 
causing systematic inflammation.51 To explore 
whether gut oralization is associated with cognitive 

impairment (CI), we mapped gut metagenomes 
against a non-redundant oral microbial gene cata
log to identify oral-specific genes in the gut 
(Methods).

After retrieving the gene counts from the cross- 
mapping gut samples, initially we performed gene 
richness analysis and observed PDD patients have 
significant enriched oral microbial genes in the gut 
(Figure 4(a)). To determine whether these genes 
potentially play a role in pathogenesis, we charac
terized potential virulence factors (VFs) and 
showed that PD-MCI and PDD patients have 
enriched oral-specific VFs in the gut compared to 
HC (Figure 4(b)). When calculating enriched or 
depleted VFs we found an overall enrichment of 
VFs in PD-MCI and PDD compared to HC and 
that 187 of enriched VFs overlap in PD-MCI and 
PDD (Figure 4(c), Supplementary Table S7).

To further understand how specific species con
tribute to enrichment of VFs we first identified 
which MGSs in both the gut and the oral contain 
these VFs within their pan-genomes (Figure S4). In 
both the gut and the oral, Escherichia coli contained 
the most VFs. In the oral cavity, other pathobionts 
such as Klebsiella pneumonia, Cronobacter sakaza
kii and Streptococcus salivarius also showed several 
VFs as part of their genomes. Similarly, in the gut, 
several Klebsiella and Enterobacter species were 
found enriched for VFs.

To elucidate underlying community structures, 
we constructed an integrative correlation network 
between gut species, oral species, and oral VFs in 
the gut (Figure 4(d)). Using network analysis, we 
identified two clusters of co-occurring species in 
the gut. The first consisted of enriched species that 
all had a positive correlation with VFs while 
the second consisted of depleted species that all 
had a negative correlation with VFs. This was an 
interesting observation because enriched species 
were primarily pathobionts such as E. coli, 
Egerthella sp. and Enterobacter xiangfangensis 
which were most connected, while depleted species 
were all species associated with a healthier gut such 
as Feacalibacerium spps and Roseburia intestinalis 
(Figure 5(a)). Overall, this suggested that the 
enrichment of pathogenic species in PD, which 
are associated with increased VFs, potentially 
cause a depletion of commensal bacteria, reduces 
species diversity, and gut barrier dysfunction. We 
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also found that K. pneumonia was positively corre
lated in both the gut and oral with VFs and that 
Streptococcus sobrinus, Lactobacillus fermentum 
and L. crispatus were enriched in oral and posi
tively correlated with VFs. The significant positive 
correlations between the oral and gut enriched 
species with virulence in the PDD and PD-MCI.

Enriched VFs had different functions related to 
stress, immune modulation, adherence, biofilm 
formation, invasion, and metabolism (Figure 4(d), 
Supplementary Table S8). The most connected 
VFs, agaC, yraC, yraD, fimG, fimD, narG, narC, 

gatZ and ompA, were all involved in biofilm for
mation, adherence, and invasion. Outer membrane 
protein A (ompA) contributes to brain microvas
cular endothelial cells (BMECs) invasion via 
a ligand–receptor interaction. Further investigation 
revealed that ibeB, ibeC and lmb are also involved 
in brain microvascular endothelial cell invasion. It 
was also interesting to find that several VFs related 
to immune modulation are involved in LPS synth
esis, for example gmhA (Figure 5(b)).

We then used saliva proteomics previously 
generated for the same cohort of patients26 to 

Figure 4. The sharing of gut and oral species is associated with increased virulence that contributes to disease progression. (a) 
Richness of oral-specific microbial genes in the gut. All gut samples were mapped against the gene catalog of oral microbial genes. 
The richness of genes was then calculated for different study groups. (b) Richness of oral-specific virulence factors (VFs) in the gut. VFs 
were identified using sequence alignment of the oral genes against the PATRIC database (methods). The richness of VFs was then 
calculated for different study groups. (c) Venn diagram of enriched VFs in PD-MCI and PDD patients. Differentially abundant VFs were 
calculated for PD-MCI and PDD patients against HC, respectively, using Wilcoxon rank-sum tests (p-value 0.05). (d) Network analysis of 
enriched VFs in PD patients. The 187 significantly enriched VFs were correlated with species in the gut and oral. Using network 
analysis, we then identified several enriched and depleted species in the gut that are positively and negatively correlated with these 
VFs, respectively. Virulence factors were aligned using BLASTP against saliva metaproteomics from the same subjects and significantly 
aligned VFs are annotated with black borders. Node sizes reflect the number of edges connected to the node.
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identify whether any of the discovered oral VFs in 
gut metagenomes were enriched in the oral cavity 
that could potentially suggest that these VFs have 
translocated to the gut and serve as a validation 
(Figure 4(d)). We were able to validate eight VFs 
using this approach. D-sedoheptulose 7-phosphate 
isomerase (gmhA), is a major immunogen involved 
in LPS biosynthesis and UDP-glucose 6-dehydro
genase (udg) also involved in immune modulation 
assist in the evasion of the host immune system by 
protecting bacteria from opsonophagocytosis and 
serum killing (Supplementary Table S8). Other vali
dated VFs were involved in metabolism and two 
genes, outer membrane receptor for ferric entero
bactin and colicins B, D (fepA) and ATP-binding 
protein (fbpC), were responsible for iron uptake by 
bacterial cells. Lastly, carbamoyl-phosphate synthase 
large chain (carB) mediates bacterial resistance to 
reactive oxygen species (ROS) and is important for 
phagosomal escape.

Discussion

Human gut and oral microbiomes have each 
been implicated to play a role in the pathology 
of PD and other neurodegenerative diseases.2 

Our study reveals a significant connection 
between the oral and gut microbiomes in PD 
patients, emphasizing the functional role of this 
oral-gut microbiome continuum in CI. Most 
notably, our functional analysis shows that infil
tration of oral microbiome in the gut are 
responsible for increased virulence factors in 
the gut lumen of PD patients.

Microbial alterations in PD are modulated by 
cognitive impairment

The increased abundance of microbial species from 
the Bifidobacterium, Lactobacillus and Akkermansia 
genera in the gut have consistently been associated 

Figure 5. An oral-gut-brain axis established through the infiltration of oral virulence factors to the gut. Network analysis revealed key 
pathobiont species, such as E. coli, enriched in the gut while commensal species such as faecalibacterium and R. intestinalis are 
decreasing. Together with the increase of VFs such as ompA, ibeB and gmhA we propose a new oral-gut-brain axis where these 
compositional changes promote biofilm formation in the gut that, in turn, increase production of VFs that directly interact with the 
brain. We also propose an indirect mechanism where increased bacterial survival and replication, LPS production and bacterial 
protection from ROS, could lead to dysfunctional host immunity.
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with PD,2,11,12,25,48 while butyrate-producing taxa 
such as, Roseburia, Faecalibacterium and Blautia 
are consistently depleted in PD patients. Our find
ings provide the evidence that CI in PD further 
influences gut microbial composition when consid
ering different stages of cognitive decline.

We found that B. longum is enriched in PD-MCI 
and PDD while B. adolescentis are only signifi
cantly enriched in PDD, suggesting that it is impor
tant to consider species specific changes with 
relation to CI. Bifidobacterium adolescentis can 
therefore be a potential marker for cognitive 
decline in PD. Similarly, L. mucosae was enriched 
in PD-MCI and PDD while L. salivarius and 
L. gasseri were only enriched in PDD and 
L. johnsonii was only enriched in MCI. Although 
not as frequently reported, Ruthenibacterium lac
tatiformans, enriched in PD-MCI and PDD, were 
also previously shown associated with PD.11

In congruence with previous studies, we found 
several Faecalibacterium spp, Roseburia spp, and 
Blautia spp depleted in PDD.2,11 We also identi
fied other butyrate producers such as 
Ruminococcus sp. to be depleted. Interestingly 
these species were depleted in PDD but not in 
PD-MCI compared to HC. Furthermore, we 
found some of these species, e.g., 
Faecalibacterium prausnitzii and Blautia wexlerae, 
were also significantly depleted in PDD com
pared to PD-MCI. Taken together, these results 
therefore suggest that depletion of species that 
are generally associated with a healthy gut envir
onment decline as a function of CI and that they 
could potentially be used as markers of CI in PD.

There are fewer studies and less consensus on 
the compositional changes in the oral microbiome 
in PD. However, the recent discovery of 
Porphyromonas gingivalis, an oral pathogen caus
ing periodontitis, in the brains of patients with 
Alzheimer’s disease patients brought forth an inter
est on the functional role of the oral microbiome 
and CI 29. We found that P. endodontalis is signifi
cantly enriched in PDD. Porphyromonas endodon
talis is also found in patients with chronic 
periodontitis and its abundance is correlated with 
P. gingivalis.52 We therefore show for the first time 
another species of Porphyromonas that are asso
ciated with CI and hypothesize that is could poten
tially play a functional role in PD pathogenesis.

A combination of unsupervised and supervised ML 
methodologies reveals functional features and 
associations with clinical data

Several studies have explored applying different 
ML methods using microbiome data.53 We have 
used both an unsupervised and supervised 
approach and subsequently used model predictions 
for functional insights and feature selection.

Unsupervised clustering has previously been 
used in metagenomics to establish a defined 
compositional signature of microbiome, termed 
enterotypes (ENT).42 The concept of the three 
distinct enterotypes initially proposed has been 
challenged54 and therefore we performed a de 
novo enterotype assignment for each sample. 
The depletion of a Prevotella enterotype and an 
enrichment of a Bacteroides enterotype in the gut 
of PD patients recapitulated our previous 
study.12 Both PD-MCI and PDD showed 
a Bacteroides enterotype, however, PD-MCI also 
showed an Alistipes enterotype, a genus showed 
to be highly elevated in PD11 and specifically 
enriched in PD-MCI.6 Therefore, our findings 
suggest that Alistipes could be a marker for dif
ferentiation of CI in PD. An interesting observa
tion was the enrichment of isoleucine 
biosynthesis is PDD. Branch-chain amino acid 
(BCAA) metabolism in the gut has been linked 
to several diseases including correlation between 
BCAA levels and PD clinical symptoms.43,55 

Using the approach of unsupervised clustering 
to identify salivatypes (SAL) has not been per
formed before in PD. Most notably, the enrich
ment of SAL1 in PDD because of increased 
Prevotella, Veilonella, Rothia and Streptococcus 
have enrichment of proline biosynthesis. 
Dysregulated proline metabolism has been 
shown in neuronal dysfunction and psychiatric 
disorders and in particular a recent study has 
functionally linked proline metabolism and gut 
microbiome in depression.56,57

Several studies have explored using microbiome 
data as input for ML classifiers and more complex 
ML models.48,53 A major challenge, however, is 
development of robust interpreter methods to 
identify the most important features that contri
bute to model prediction. Here, we have used 
SHAP that is a state-of-the-art method for this 
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purpose that we have used in a previous study.48 

We showed that combining gut and oral micro
biome data significantly improves model predic
tions, which is important for establishing 
clinically feasible biomarkers for PD. We found 
that the increase of A. muciniphila, commonly 
increased in PD, was an important feature for pre
diction of PDD against PD-MCI; however, 
A. muciniphila was not significantly increased in 
PDD when performing differential abundance ana
lysis. This highlights the value that interpretable 
ML models can add to existing microbiome meth
odologies by identifying trends across the dataset 
that contribute to a specific disease phenotype 
where the species does not necessarily significantly 
change in abundance between groups. Given the 
significant influence of diet on microbiome, sys
tematic investigation of dietary nutrient58–60 on 
microbiome composition and functions could elu
cidate a more mechanistic role of A. muciniphila in 
this context.

The depletion of Bacteroides uniformis was an 
important feature for differentiating between PDD 
and PD-MCI. The dopamine transporter (DAT) is 
responsible for transport of dopamine, the most 
common treatment for patients with PD. In 
a recent study, Hartstra et al. showed that fecal 
microbiota transplant of B. uniformis increased 
DAT binding and importantly that the gut-brain 
axis can be modulated.61 Our results here therefore 
shows that this species might be particularly 
important for cognition through dopamine meta
bolism and that its depletion leads to increased 
cognitive decline.

The oralization of the gut lumen correlates with 
increased virulence

There have been several studies that have shown 
that the translocation of oral bacterial species, often 
opportunistic pathogens, to the gut lumen drive 
disease phenotypes.36,48,62 Although this provides 
novel avenues for biomarkers, the underlying 
mechanisms and functionality in particular dis
eases remain largely unclear.

The enrichment of oral VFs in the gut of PD 
patients, in particular PDD, shows that these spe
cies potentially exert specific functions in the gut. 
The in-depth network analysis also highlighted 

underlying microbiome community structures 
where enriched pathogenic species such as E. coli, 
Enterobacter xiangfangensis and Egerthella supress 
commensal butyrate producing species such as 
Faecalibacterium spp, R. intestinalis and R. faecis. 
Competition between commensals and pathogenic 
bacteria and an imbalance are known to contribute 
to disease and here were show that it correlates 
with increased production of VFs by pathobionts 
providing mechanistic insights that could be 
exploited therapeutically.

Our integrative analysis suggests a potential 
mechanistic oral-gut-brain axis mediated by 
increased production of VFs in the gut 
(Figure 5(c)). In the first instance, several oral 
VFs are involved in biofilm formation and adher
ence. The formation of biofilms on the outer muco
sal layer can lead to mucosal invasion by bringing 
bacteria close to the epithelium that contribute to 
a leaky gut. OmpA,63 highly connected in our net
work, is a key VFs that mediate the formation of 
bacterial biofilms but has interestingly also been 
shown to be a contributor to invasion of brain 
microvascular endothelial cells (BMECs) via 
ligand–receptor interaction. Together, with the 
increased connectivity of genes with similar func
tion, for example ibeB that has been shown to 
invade BMECs,64 our findings suggest a mechan
ism where infiltration of oral factors to the gut 
could cross the gut wall and interact with brain 
endothelial cells.

We hypothesize that the formation of biofilms in 
the gut contributes to overall virulence and dysre
gulation of the immune system through various 
mechanisms. Firstly, we validated two oral VFs, 
fepA and fbpC, involved in iron acquisition and 
iron metabolism that has been shown to be impor
tant in the pathogenicity and survival of pathogens 
such as E. coli.65 In addition, reactive oxygen spe
cies (ROS) that are produced as by-products of 
metabolism can induce DNA damage and media
tion through increased carB potentially protects 
biofilm formation. Finally, the production of lipo
polysaccharide (LPS) has been shown to contribute 
to several diseases and a leaky gut. Apart from 
gmhA that was validated here, several other oral 
VFs in the gut were related to LPS metabolism. 
Together, we therefore hypothesize that the infil
tration of the oral microbiome to the gut creates 
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a dysregulated microbial community structure, 
that promotes a leaky gut, increase pathogen survi
val which in turn increases LPS production and 
other VFs that can interact with BMECs either 
directly or indirectly to promote CI and PD 
(Figure 5(c)). It is, however, crucial that these find
ings are supported by experimental data in future 
studies to validate the proposed mechanism of 
action of VFs in the gut and its contribution to 
PD pathology.

Our study provides compelling evidence that the 
interplay between oral and gut microbiomes sig
nificantly influences PD pathology and CI. The 
translocation of oral microbial species to the gut, 
along with their associated VFs, highlights new 
avenues for understanding disease mechanisms 
and developing potential biomarkers and therapeu
tic avenues. The integration of machine learning 
techniques and microbiome data enhances our 
ability to identify key functional features and 
underscores the importance of a multifaceted 
approach in advancing our knowledge of PD and 
related neurodegenerative diseases.

Study limitations

Our analysis identified several microbiome features 
associated with CI in PD. However, disentangling 
cognitive features from other PD symptoms 
remains challenging. Factors such as disease dura
tion and severity are known to influence the micro
biome, and patients with increased disease severity 
often also experience CI. While the inclusion of gut 
microbiome samples from PD patients without CI 
and the correlation of species with disease duration 
and UPDRS partially addresses this limitation, it 
does not fully resolve the issue.

In addition, our study did not explicitly account 
for other host and environmental factors that can 
impact the gut and oral microbiome. For example, 
factors such as diet, stress, and sleep – known to 
influence microbiome composition – may differ in 
PD patients and could potentially amplify micro
biome changes. Similarly, patients with more 
severe motor symptoms and CI may have compro
mised dental care, which could significantly affect 
the oral microbiome composition. The MDS- 
UPDRS stage II questionnaire, for example, con
tains a section on dental hygiene, and could be used 

more explicitly to assess its impact on CI and PD. 
Another important factor that could impact micro
biome composition related to PD severity and CI is 
physical activity or exercise that we also did not 
account for. There have been several studies that 
show how physical activity impacts gut micro
biome composition and metabolism and future 
studies would benefit from more explicit assess
ment of this. Together, these limitations highlight 
the need for future studies to control for or mea
sure several environmental variables to better 
understand their contributions to microbiome 
changes in CI of PD patients.

Methods

Study subjects, clinical characteristics and sample 
collection

The study was approved by the ethics committee at 
participating institutions (with the authorization 
number covering Medipol University Research 
and Training Hospital and Bakirkoy Research and 
Training Hospital for Psychiatric and Neurological 
Diseases 10,840,098–604.01.01-E.3958, respec
tively; and GOKAEK-2018/365/20.13 for Kocaeli 
University Research and Application Hospital), 
and informed consent was obtained from all parti
cipants prior to the study.

Between 2018 and 2022, a total of 140 subjects 
(HC = 26; PD = 20, PD-MCI = 41; PDD = 47) were 
recruited from the neurology clinics of these ter
tiary training hospitals. This case-control study 
used a subset of samples from a larger cohort (N  
= 176), recruited into an ongoing study on CI in 
PD. The subset was chosen based on the availability 
of both saliva and fecal samples. Healthy control 
subjects (HC) were recruited mainly from family 
members of patients, hospital staff, and students, 
and from individuals who responded to study 
advertisement. Saliva and fecal samples were placed 
on ice immediately upon collection and transferred 
to a −80°C freezer within 30 minutes without 
a preservation buffer, where they were stored 
until transport. At one-month intervals, samples 
were shipped to the research laboratory on dry 
ice, with delivery completed within one hour, and 
stored until further processing. Clinical data, 
including drug intake, and demographic 
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information, including age, gender, years of educa
tion were collected at clinic visits (Supplementary 
Table S1). The patients were examined by experi
enced neurologists and the diagnosis of PD was 
made within the framework of the “United 
Kingdom Parkinson’s Disease Society Brain Bank” 
criteria. Two well-trained interviewers from 
Department of Psychology conducted all assess
ments following a standardized protocol. The use 
of standardized administration and scoring proce
dures helped mitigate potential biases in measure
ment. Subjects with previous head trauma, stroke, 
or exposure to toxic substances, substance abuse, 
history of antibiotic or probiotic use within last 
one-month, chronic severe diseases (diabetes, can
cer, kidney failure, etc.), autoimmune diseases, 
smokers, and those with symptoms suggestive of 
Parkinson’s plus syndromes were excluded from 
the study. The Hoehn-Yahr Stages Parkinson’s 
Staging Scale was utilized to assess the disease 
stage, while The Movement Disorder Society’s 
diagnostic criteria for Parkinson’s Disease 
Dementia were employed for evaluating 
dementia.66 The diagnosis of Mild Cognitive 
Impairment (MCI) was established following the 
guidelines outlined by Litvan et al.,67 employing 
level II criteria. This involved conducting 
a thorough cognitive assessment utilizing the 
MDS task force diagnostic criteria, which com
prises neuropsychological evaluations covering 
two tests for each of the five cognitive domains.

Sample preparation and metagenomics sequencing

A total of 228 samples (114 stool and 114 saliva) 
(HC = 26, PD-MCI = 41, PDD = 47) were used for 
shotgun metagenomics sequencing. An additional 
20 stool samples from PD patients without CI, 
termed PD, were also used for shotgun metage
nomics sequencing. Microbial DNA was extracted 
from saliva samples using the DNeasy PowerSoil 
kit (Qiagen, Hilden, Germany) with previously 
described modifications.26 For stool samples, the 
same extraction kit was used with adjustments to 
the manufacturer’s protocol. Stool samples were 
transferred to the PowerBead tube and homoge
nized by bead-beating using a Next Advance Bullet 
Blender (30 s at level 4, 30 s incubation on ice, and 
30 s at level 4). Subsequently, the manufacturer’s 

protocol was followed without further modifica
tion. The purity and concentration of the extracted 
genomic DNA were measured using the Qubit 2.0 
Fluorometer (Thermo Fisher Scientific, MA, USA). 
No human DNA depletion or microbial DNA 
enrichment was performed before sequencing. 
A DNA extraction negative control and a no- 
template PCR control were included and 
sequenced to identify potential microbiome con
tamination from reagents or the environment. 
Saliva and stool samples were processed in separate 
batches. To minimize batch effects, samples were 
randomized prior to DNA extraction, library pre
paration, and sequencing. Furthermore, we 
included technical replicates to enhance data 
robustness and reproducibility, with indepen
dent replicates at key stages, such as separate 
extractions from the same sample to assess 
nucleic acid consistency and duplicate sequen
cing to evaluate technical variability. Shotgun 
sequencing libraries were prepared according to 
Illumina’s Nextera XT library preparation pro
tocol and sequenced using a NovaSeq600 plat
form with a 2 × 150 paired-end kit. All stool 
samples passed quality control and a total of 
107 saliva samples passed quality control (HC  
= 26, PD-MCI = 37, PDD = 44).

Microbial gene and metagenomics species (MGS) 
quantification

Raw sequencing reads were mapped and counted 
using the METEOR pipeline (available at: https:// 
github.com/sysbiomelab/meteor_pipeline). For gut 
samples, the IGC2 gene catalog39 of human gut 
microbiome was used as reference and for oral 
samples the HS_8.4_oral gene catalog40 was used. 
Mapping was performed using a >95% identity 
threshold to account for gene variability and 
the non-redundant nature of the catalog 
(Suplementary Table S2). This generated gene 
count matrices that were then subjected to down
sizing and normalization (reads per kilo base 
per million mapped reads (RPKM method)) to 
generate the gene frequency matrix for down
stream analysis. For the gut samples, downsizing 
was done at 5 million reads before normalization to 
correct for differences in sequencing depth. After 
downsizing a total of 126 samples were remaining 
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(HC = 22, PD = 20, PD-MCI = 40, PDD = 44) and 
for the oral samples, only normalization was per
formed (Figure S1A, Supplementary Table S2). The 
resulting gene matrices were then projected on 
previously reconstructed metagenomic species 
(MGSs) using the top 50 marker genes per MGS 
to calculate MGS abundances for each sample 
(Supplementary Table S3). Analysis was performed 
using the R package MetaOMineR (momr) 
designed to analyze large quantitative metage
nomics datasets.68

Functional gene annotation and analysis

The normalized gene count matrices were 
annotated for functional investigation. Amino 
acid sequences of the gut and oral catalogs 
were aligned to amino acid sequences of 
KEGG orthologs (KEGG database version 
82)69 using Diamond (version 0.9.22.123)70 

and best hit alignments with e-value ≤10−5 

and bit scores ≥60 were considered. Amino 
acid sequences of the gut and oral catalogs 
were aligned to amino acid sequences of pro
teins in the PATRIC database71 using BLASTP 
and best hit alignments with e-value ≤10−10 

and identity of >80% were considered. The 
virulence factor database (VFDB) incorporates 
the PATRIC database and gives more in depth- 
annotations and descriptions.72 We therefore 
enhanced the PATRIC databases annotations 
with that of VFDB. This was then used to 
calculate gene abundances for metabolic genes 
and virulence factors. For enriched and 
depleted KEGG modules we first identified dif
ferentially abundant metabolic genes using 
Wilcoxon rank-sum tests. For comparison of 
clinical study groups in Figure 1(h) we used 
a p-value cutoff of 0.05 and for comparison 
between enterotypes and salivatypes (Figure 2(d,h)) 
we used a p-value cutoff of 0.01. For both analyses 
only genes with a log2foldchange of 2 or more were 
considered. We then used these genes to identify 
significantly enriched or depleted KEGG modules 
using hypergeometric tests adjusted for false discov
ery using the Benjamini-Hochberg procedure and 
considered p-adjusted <0.05 as significantly chan
ging modules.

Richness, diversity analysis and differential 
abundance analysis

Richness was calculated as the sum of the number of 
MGS per sample and Shannon diversity was calcu
lated using the skbio package in Python. Beta- 
diversity was done by first calculating the Bray- 
curtis distance between all samples using the distance 
function in scipy and then performing principal coor
dinate analysis using the skbio package. For differen
tial abundance analysis the calculated abundances of 
MGSs were mapped to different taxonomical ranks 
(phylum, class, order, family, genus, or73species) and 
the sum of each taxon calculated per sample. We then 
used Wilcoxon rank-sum tests with false discovery 
rate adjustment using the Benjamini-Hochberg pro
cedure to calculate differentially abundant microbes 
at these different taxonomical ranks. Details of statis
tical cutoffs can be found in the text.

Machine learning classification to predict clinical 
outcomes

We used the Scikit-learn python package to train 
random forest (RF) and support vector classifica
tion (SVC) models to predict different clinical 
outcomes.74 Training and testing were performed 
on randomly selected samples split 70% and 30% 
of the full dataset, respectively, with a fixed ran
dom seed to ensure the reproducibility of the 
model. The following hyperparameters were set 
for the RF model: ‘random_state’: 1, ‘n_estima
tors’: 500, ‘bootstrap’: True and for the SVC 
model: ‘random_state’: 1. All other parameters 
were kept as their default. Model performance 
was measured using AUROC scoring and accu
racy. Python implementation of the explainable 
AI algorithm, Shapley Additive ExPlanations 
(SHAP), was used to show the feature (species) 
contribution to disease classification the mean 
absolute SHAP score for each disease predictive 
model was determined using the sign of the 
Spearman rank correlation between the feature 
value and the SHAP score. Positive values indi
cate that a higher relative abundance is more 
likely to classify the disease than in healthy sam
ples. Negative values indicate that a lower relative 
abundance is more likely to classify the disease 
than in healthy samples.
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Integrative correlation network analysis of VFs and 
MGSs

We first mapped the gut metagenomes against the 
oral gene catalog to identify oral specific genes in 
the gut. Enriched and depleted VFs were calculated 
using Wilcoxon rank-sum tests (p-value <0.05) con
sidering a positive and negative log-fold change, 
respectively. We then performed a Spearman’s 
rank correlation between enriched VFs and MGSs 
in the gut and oral, respectively, using a p-value 
cutoff of 0.01. The protein sequences of enriched 
VFs were aligned to previously generated saliva 
metaproteomics using BLASTP with an e-value cut
off of 10−7 and percentage identity of higher than 
50. The integrative network was then visualized in 
Cytoscape and used to calculate the degree of con
nections of each node.
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